混合随机网络攻击下半马尔可夫跳合-竞争神经网络的分散动态事件触发被动二部同步

IF 3.4 2区 数学 Q1 MATHEMATICS, APPLIED
Liangyao Shi, Jing Wang
{"title":"混合随机网络攻击下半马尔可夫跳合-竞争神经网络的分散动态事件触发被动二部同步","authors":"Liangyao Shi,&nbsp;Jing Wang","doi":"10.1016/j.amc.2025.129560","DOIUrl":null,"url":null,"abstract":"<div><div>The issue of bipartite synchronization for a class of continuous-time coupled neural networks is investigated in this article, in which the interactions among the neural network nodes coexist collaboratively and antagonistically. At first, the semi-Markov jump process is utilized to model the stochastic switching network topology. Then, a decentralized dynamic event-triggered mechanism incorporating a novel dynamic threshold parameter is proposed to avoid unnecessary continuous monitoring and reduce communication overhead. Besides, the secure bipartite synchronization controller is devised to meet the control demand under hybrid cyber-attacks. Thereafter, according to the Lyapunov stability theory, sufficient conditions are developed to guarantee that the resulting error system is stochastically stable with the specified passive performance. Lastly, the effectiveness of the proposed controller is validated through a simulation example.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"507 ","pages":"Article 129560"},"PeriodicalIF":3.4000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decentralized dynamic event-triggered passive bipartite synchronization for semi-Markov jump cooperation-competition neural networks under hybrid random cyber-attacks\",\"authors\":\"Liangyao Shi,&nbsp;Jing Wang\",\"doi\":\"10.1016/j.amc.2025.129560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The issue of bipartite synchronization for a class of continuous-time coupled neural networks is investigated in this article, in which the interactions among the neural network nodes coexist collaboratively and antagonistically. At first, the semi-Markov jump process is utilized to model the stochastic switching network topology. Then, a decentralized dynamic event-triggered mechanism incorporating a novel dynamic threshold parameter is proposed to avoid unnecessary continuous monitoring and reduce communication overhead. Besides, the secure bipartite synchronization controller is devised to meet the control demand under hybrid cyber-attacks. Thereafter, according to the Lyapunov stability theory, sufficient conditions are developed to guarantee that the resulting error system is stochastically stable with the specified passive performance. Lastly, the effectiveness of the proposed controller is validated through a simulation example.</div></div>\",\"PeriodicalId\":55496,\"journal\":{\"name\":\"Applied Mathematics and Computation\",\"volume\":\"507 \",\"pages\":\"Article 129560\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0096300325002863\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300325002863","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一类连续时间耦合神经网络的二部同步问题,其中神经网络节点之间的相互作用是协同共存的,也是对抗共存的。首先,利用半马尔可夫跳变过程对随机交换网络拓扑进行建模。然后,提出了一种包含新的动态阈值参数的分散动态事件触发机制,以避免不必要的连续监控,降低通信开销。此外,设计了安全的二部同步控制器,以满足混合网络攻击下的控制需求。然后,根据李雅普诺夫稳定性理论,给出了保证误差系统随机稳定的充分条件。最后,通过仿真实例验证了所提控制器的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decentralized dynamic event-triggered passive bipartite synchronization for semi-Markov jump cooperation-competition neural networks under hybrid random cyber-attacks
The issue of bipartite synchronization for a class of continuous-time coupled neural networks is investigated in this article, in which the interactions among the neural network nodes coexist collaboratively and antagonistically. At first, the semi-Markov jump process is utilized to model the stochastic switching network topology. Then, a decentralized dynamic event-triggered mechanism incorporating a novel dynamic threshold parameter is proposed to avoid unnecessary continuous monitoring and reduce communication overhead. Besides, the secure bipartite synchronization controller is devised to meet the control demand under hybrid cyber-attacks. Thereafter, according to the Lyapunov stability theory, sufficient conditions are developed to guarantee that the resulting error system is stochastically stable with the specified passive performance. Lastly, the effectiveness of the proposed controller is validated through a simulation example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信