径向对称可压缩Navier-Stokes方程的最优衰减估计

IF 2.3 2区 数学 Q1 MATHEMATICS
Tsukasa Iwabuchi, Dáithí Ó hAodha
{"title":"径向对称可压缩Navier-Stokes方程的最优衰减估计","authors":"Tsukasa Iwabuchi,&nbsp;Dáithí Ó hAodha","doi":"10.1016/j.jde.2025.113487","DOIUrl":null,"url":null,"abstract":"<div><div>We examine the large-time behaviour of solutions to the compressible Navier-Stokes equations under the assumption of radial symmetry. In particular, we calculate a fast time-decay estimate of the norm of the nonlinear part of the solution. This allows us to obtain a bound from below for the time-decay of the solution in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span>, proving that our decay estimate in that space is sharp. The decay rate is the same as that of the linear problem for curl-free flow. We also obtain an estimate for a scalar system related to curl-free solutions to the compressible Navier-Stokes equations in a weighted Lebesgue space.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"441 ","pages":"Article 113487"},"PeriodicalIF":2.3000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal decay estimates for the radially symmetric compressible Navier-Stokes equations\",\"authors\":\"Tsukasa Iwabuchi,&nbsp;Dáithí Ó hAodha\",\"doi\":\"10.1016/j.jde.2025.113487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We examine the large-time behaviour of solutions to the compressible Navier-Stokes equations under the assumption of radial symmetry. In particular, we calculate a fast time-decay estimate of the norm of the nonlinear part of the solution. This allows us to obtain a bound from below for the time-decay of the solution in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span>, proving that our decay estimate in that space is sharp. The decay rate is the same as that of the linear problem for curl-free flow. We also obtain an estimate for a scalar system related to curl-free solutions to the compressible Navier-Stokes equations in a weighted Lebesgue space.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"441 \",\"pages\":\"Article 113487\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625005145\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625005145","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在径向对称假设下,研究了可压缩Navier-Stokes方程解的大时态。特别地,我们计算了解的非线性部分范数的快速时间衰减估计。这允许我们从下得到解在L∞上的时间衰减的界,证明我们在该空间中的衰减估计是尖锐的。其衰减率与无旋流线性问题的衰减率相同。我们也得到了加权Lebesgue空间中与可压缩Navier-Stokes方程无旋度解相关的标量系统的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal decay estimates for the radially symmetric compressible Navier-Stokes equations
We examine the large-time behaviour of solutions to the compressible Navier-Stokes equations under the assumption of radial symmetry. In particular, we calculate a fast time-decay estimate of the norm of the nonlinear part of the solution. This allows us to obtain a bound from below for the time-decay of the solution in L, proving that our decay estimate in that space is sharp. The decay rate is the same as that of the linear problem for curl-free flow. We also obtain an estimate for a scalar system related to curl-free solutions to the compressible Navier-Stokes equations in a weighted Lebesgue space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信