Charles Kim , Brian Donovan , Jeffrey P. Fitts , Raymond S. Farinato , D.R. Nagaraj , Scott Banta , Alan C. West
{"title":"铁浸出硫化铜精矿钒(II)还原性提质,促进室温阶段氧化铜浸出","authors":"Charles Kim , Brian Donovan , Jeffrey P. Fitts , Raymond S. Farinato , D.R. Nagaraj , Scott Banta , Alan C. West","doi":"10.1016/j.hydromet.2025.106509","DOIUrl":null,"url":null,"abstract":"<div><div>Over this coming decade, copper demand in the United States is projected to increase significantly because of the energy transition to carbon-free sources. Compared to traditional hydrometallurgical processes involving oxidation, reductive leaching of copper mineral concentrates has been shown to yield significant advantages. For example, reductive leaching of chalcopyrite can be performed at ambient temperatures without intensive grinding. This could achieve high yields, reduced processing costs, all while minimizing environmental impacts.</div><div>This work explores vanadium reductive leaching of other copper mineral concentrates by measuring leaching kinetics and yields. Over 90 % of the copper was successfully extracted from copper concentrates obtained from three active mines, each with different mineral compositions, after reacting in VSO<sub>4</sub>, H<sub>2</sub>SO<sub>4</sub> solution at room temperature for 60 min. It was shown that the addition of FeSO<sub>4</sub> enhanced the leaching yields of copper from chalcocite (Cu<sub>2</sub>S), from 55.1 % to 100 % in concentrates having moderate iron concentrations and from 62.7 % to 82.2 % in low-iron concentrates. The copper recovery in low-iron concentrates could be increased to 99 % after leaching a second time, suggesting a staged operation may be favored. Results show that similar yields may be achieved when leaching occurs in a continuous flow reactor with residence times between 10 and 20 min. For example, 85.2 % - 100 % of iron was leached from Source 2 concentrates, and 87.7 % - 95.3 % of iron was leached from Source 3 concentrates in continuous flow leaching. The processing rate using the continuous flow reactor was 87 g/L h<sup>−1</sup>, a rate competitive with existing processing methods.</div></div>","PeriodicalId":13193,"journal":{"name":"Hydrometallurgy","volume":"236 ","pages":"Article 106509"},"PeriodicalIF":4.8000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vanadium(II) reductive upgrading of copper sulfide concentrates via Iron leaching to facilitate stagewise oxidative copper leaching at room temperature\",\"authors\":\"Charles Kim , Brian Donovan , Jeffrey P. Fitts , Raymond S. Farinato , D.R. Nagaraj , Scott Banta , Alan C. West\",\"doi\":\"10.1016/j.hydromet.2025.106509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Over this coming decade, copper demand in the United States is projected to increase significantly because of the energy transition to carbon-free sources. Compared to traditional hydrometallurgical processes involving oxidation, reductive leaching of copper mineral concentrates has been shown to yield significant advantages. For example, reductive leaching of chalcopyrite can be performed at ambient temperatures without intensive grinding. This could achieve high yields, reduced processing costs, all while minimizing environmental impacts.</div><div>This work explores vanadium reductive leaching of other copper mineral concentrates by measuring leaching kinetics and yields. Over 90 % of the copper was successfully extracted from copper concentrates obtained from three active mines, each with different mineral compositions, after reacting in VSO<sub>4</sub>, H<sub>2</sub>SO<sub>4</sub> solution at room temperature for 60 min. It was shown that the addition of FeSO<sub>4</sub> enhanced the leaching yields of copper from chalcocite (Cu<sub>2</sub>S), from 55.1 % to 100 % in concentrates having moderate iron concentrations and from 62.7 % to 82.2 % in low-iron concentrates. The copper recovery in low-iron concentrates could be increased to 99 % after leaching a second time, suggesting a staged operation may be favored. Results show that similar yields may be achieved when leaching occurs in a continuous flow reactor with residence times between 10 and 20 min. For example, 85.2 % - 100 % of iron was leached from Source 2 concentrates, and 87.7 % - 95.3 % of iron was leached from Source 3 concentrates in continuous flow leaching. The processing rate using the continuous flow reactor was 87 g/L h<sup>−1</sup>, a rate competitive with existing processing methods.</div></div>\",\"PeriodicalId\":13193,\"journal\":{\"name\":\"Hydrometallurgy\",\"volume\":\"236 \",\"pages\":\"Article 106509\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrometallurgy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304386X2500074X\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrometallurgy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304386X2500074X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Vanadium(II) reductive upgrading of copper sulfide concentrates via Iron leaching to facilitate stagewise oxidative copper leaching at room temperature
Over this coming decade, copper demand in the United States is projected to increase significantly because of the energy transition to carbon-free sources. Compared to traditional hydrometallurgical processes involving oxidation, reductive leaching of copper mineral concentrates has been shown to yield significant advantages. For example, reductive leaching of chalcopyrite can be performed at ambient temperatures without intensive grinding. This could achieve high yields, reduced processing costs, all while minimizing environmental impacts.
This work explores vanadium reductive leaching of other copper mineral concentrates by measuring leaching kinetics and yields. Over 90 % of the copper was successfully extracted from copper concentrates obtained from three active mines, each with different mineral compositions, after reacting in VSO4, H2SO4 solution at room temperature for 60 min. It was shown that the addition of FeSO4 enhanced the leaching yields of copper from chalcocite (Cu2S), from 55.1 % to 100 % in concentrates having moderate iron concentrations and from 62.7 % to 82.2 % in low-iron concentrates. The copper recovery in low-iron concentrates could be increased to 99 % after leaching a second time, suggesting a staged operation may be favored. Results show that similar yields may be achieved when leaching occurs in a continuous flow reactor with residence times between 10 and 20 min. For example, 85.2 % - 100 % of iron was leached from Source 2 concentrates, and 87.7 % - 95.3 % of iron was leached from Source 3 concentrates in continuous flow leaching. The processing rate using the continuous flow reactor was 87 g/L h−1, a rate competitive with existing processing methods.
期刊介绍:
Hydrometallurgy aims to compile studies on novel processes, process design, chemistry, modelling, control, economics and interfaces between unit operations, and to provide a forum for discussions on case histories and operational difficulties.
Topics covered include: leaching of metal values by chemical reagents or bacterial action at ambient or elevated pressures and temperatures; separation of solids from leach liquors; removal of impurities and recovery of metal values by precipitation, ion exchange, solvent extraction, gaseous reduction, cementation, electro-winning and electro-refining; pre-treatment of ores by roasting or chemical treatments such as halogenation or reduction; recycling of reagents and treatment of effluents.