热带气旋期间输电系统风险预报的概率微尺度风场建模

IF 5.7 1区 工程技术 Q1 ENGINEERING, CIVIL
Xiubing Huang, Naiyu Wang
{"title":"热带气旋期间输电系统风险预报的概率微尺度风场建模","authors":"Xiubing Huang,&nbsp;Naiyu Wang","doi":"10.1016/j.strusafe.2025.102620","DOIUrl":null,"url":null,"abstract":"<div><div>Tropical cyclones (TCs) pose significant risks to power transmission systems, causing extensive damage, widespread outages and severe socio-economic impacts. While reliable risk forecasting of these systems during TCs hinges on accurate wind predictions, operational numerical weather prediction (NWP) models struggle to deliver unbiased, high-resolution probabilistic wind-field forecasts necessary for infrastructure risk projections. This study introduces the Probabilistic Micro-Scale Wind-Field model (ProbMicro-WF) designed to enhance real-time hazard modeling for power system risk forecasts during TC evolution. This model improves NWP wind forecast by achieving the following: 1) probabilistic calibration and bias correction for NWP wind forecasts, leveraging historical TC observational data to improve prediction accuracy at high wind speeds; 2) terrain-modified statistical downscaling that translates mesoscale forecasts to micro-scale wind fields, capturing localized wind dynamics critical for tower- and transmission line-specific risk evaluation; and 3) a spatiotemporal stochastic model that preserves wind-field correlation structures, mitigating systemic underestimation of risk variance across geographically dispersed infrastructure during TC evolution. Finally, the ProbMicro-WF model is applied to the power transmission system in Zhejiang Province, China (105,500 km<sup>2</sup>) during Super Typhoon Lekima in 2019, highlighting its capability to simulate spatially coherent, high-resolution wind fields, enabling robust pre-event mitigation and real-time grid management in TC-prone regions.</div></div>","PeriodicalId":21978,"journal":{"name":"Structural Safety","volume":"116 ","pages":"Article 102620"},"PeriodicalIF":5.7000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling probabilistic micro-scale wind field for risk forecasts of power transmission systems during tropical cyclones\",\"authors\":\"Xiubing Huang,&nbsp;Naiyu Wang\",\"doi\":\"10.1016/j.strusafe.2025.102620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Tropical cyclones (TCs) pose significant risks to power transmission systems, causing extensive damage, widespread outages and severe socio-economic impacts. While reliable risk forecasting of these systems during TCs hinges on accurate wind predictions, operational numerical weather prediction (NWP) models struggle to deliver unbiased, high-resolution probabilistic wind-field forecasts necessary for infrastructure risk projections. This study introduces the Probabilistic Micro-Scale Wind-Field model (ProbMicro-WF) designed to enhance real-time hazard modeling for power system risk forecasts during TC evolution. This model improves NWP wind forecast by achieving the following: 1) probabilistic calibration and bias correction for NWP wind forecasts, leveraging historical TC observational data to improve prediction accuracy at high wind speeds; 2) terrain-modified statistical downscaling that translates mesoscale forecasts to micro-scale wind fields, capturing localized wind dynamics critical for tower- and transmission line-specific risk evaluation; and 3) a spatiotemporal stochastic model that preserves wind-field correlation structures, mitigating systemic underestimation of risk variance across geographically dispersed infrastructure during TC evolution. Finally, the ProbMicro-WF model is applied to the power transmission system in Zhejiang Province, China (105,500 km<sup>2</sup>) during Super Typhoon Lekima in 2019, highlighting its capability to simulate spatially coherent, high-resolution wind fields, enabling robust pre-event mitigation and real-time grid management in TC-prone regions.</div></div>\",\"PeriodicalId\":21978,\"journal\":{\"name\":\"Structural Safety\",\"volume\":\"116 \",\"pages\":\"Article 102620\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Safety\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167473025000487\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167473025000487","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

热带气旋(tc)对输电系统构成重大风险,造成广泛破坏、大范围停电和严重的社会经济影响。虽然这些系统在tc期间的可靠风险预测取决于准确的风力预测,但操作性数值天气预报(NWP)模型难以提供基础设施风险预测所需的无偏、高分辨率概率风场预测。本文介绍了概率微尺度风场模型(ProbMicro-WF),该模型旨在增强电力系统在TC演变过程中风险预测的实时风险建模。该模型通过实现以下几点改进了NWP风预报:1)NWP风预报的概率校正和偏置校正,利用历史TC观测数据提高了高风速下的预报精度;2)地形修正统计降尺度,将中尺度预报转化为微尺度风场,捕捉局部风动力学,对塔和输电线路特定风险评估至关重要;3)一个时空随机模型,该模型保留了风场相关结构,减轻了在TC演化过程中地理分散的基础设施风险方差的系统性低估。最后,将ProbMicro-WF模型应用于2019年超级台风“利基马”期间中国浙江省(105,500平方公里)的输电系统,突出了其模拟空间相干、高分辨率风场的能力,从而在tc易发地区实现了强大的事件前缓解和实时电网管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling probabilistic micro-scale wind field for risk forecasts of power transmission systems during tropical cyclones
Tropical cyclones (TCs) pose significant risks to power transmission systems, causing extensive damage, widespread outages and severe socio-economic impacts. While reliable risk forecasting of these systems during TCs hinges on accurate wind predictions, operational numerical weather prediction (NWP) models struggle to deliver unbiased, high-resolution probabilistic wind-field forecasts necessary for infrastructure risk projections. This study introduces the Probabilistic Micro-Scale Wind-Field model (ProbMicro-WF) designed to enhance real-time hazard modeling for power system risk forecasts during TC evolution. This model improves NWP wind forecast by achieving the following: 1) probabilistic calibration and bias correction for NWP wind forecasts, leveraging historical TC observational data to improve prediction accuracy at high wind speeds; 2) terrain-modified statistical downscaling that translates mesoscale forecasts to micro-scale wind fields, capturing localized wind dynamics critical for tower- and transmission line-specific risk evaluation; and 3) a spatiotemporal stochastic model that preserves wind-field correlation structures, mitigating systemic underestimation of risk variance across geographically dispersed infrastructure during TC evolution. Finally, the ProbMicro-WF model is applied to the power transmission system in Zhejiang Province, China (105,500 km2) during Super Typhoon Lekima in 2019, highlighting its capability to simulate spatially coherent, high-resolution wind fields, enabling robust pre-event mitigation and real-time grid management in TC-prone regions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Structural Safety
Structural Safety 工程技术-工程:土木
CiteScore
11.30
自引率
8.60%
发文量
67
审稿时长
53 days
期刊介绍: Structural Safety is an international journal devoted to integrated risk assessment for a wide range of constructed facilities such as buildings, bridges, earth structures, offshore facilities, dams, lifelines and nuclear structural systems. Its purpose is to foster communication about risk and reliability among technical disciplines involved in design and construction, and to enhance the use of risk management in the constructed environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信