{"title":"蛋白质-多酚络合与偶联:机制、功能差异和抗氧化-乳化剂作用的综述","authors":"Peyman Ebrahimi , Anna Lante , Lutz Grossmann","doi":"10.1016/j.foodhyd.2025.111590","DOIUrl":null,"url":null,"abstract":"<div><div>The interaction between proteins and polyphenols has gained attention for improving the stability and physicochemical properties of colloidal systems. This review focuses on recent advances in their interaction mechanisms and functional impacts. Protein-polyphenol assemblies are formed through covalent bonding (<em>i.e.,</em> conjugation) or non-covalent bonding (<em>i.e.,</em> complexation). These interactions may lead to distinct functionalities and properties influenced by environmental conditions. The conjugation is usually initiated by the oxidation of polyphenols through alkaline treatment, free radicals, etc., while complexation occurs even under milder conditions, such as neutral pH and room temperature, resulting in weaker and reversible interactions. Despite the significant increase in the number of studies on protein-polyphenol interactions in recent years, there is no clear consensus in the previous literature on whether covalent or non-covalent bonding provides better stability under different processing conditions. In emulsion-based food systems, protein-polyphenol assemblies can function dually as antioxidant-emulsifiers, where proteins provide the emulsifying ability, and polyphenols contribute antioxidant activity. This effect is due to the positioning of these assemblies in the oil-water interface. Understanding the distinct roles and conditions of protein-polyphenol interactions is crucial for optimizing their use in designing stable, functional colloidal systems, particularly in emulsion-based foods.</div></div>","PeriodicalId":320,"journal":{"name":"Food Hydrocolloids","volume":"169 ","pages":"Article 111590"},"PeriodicalIF":11.0000,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Protein-polyphenol complexation vs. conjugation: A review on mechanisms, functional differences, and antioxidant-emulsifier roles\",\"authors\":\"Peyman Ebrahimi , Anna Lante , Lutz Grossmann\",\"doi\":\"10.1016/j.foodhyd.2025.111590\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The interaction between proteins and polyphenols has gained attention for improving the stability and physicochemical properties of colloidal systems. This review focuses on recent advances in their interaction mechanisms and functional impacts. Protein-polyphenol assemblies are formed through covalent bonding (<em>i.e.,</em> conjugation) or non-covalent bonding (<em>i.e.,</em> complexation). These interactions may lead to distinct functionalities and properties influenced by environmental conditions. The conjugation is usually initiated by the oxidation of polyphenols through alkaline treatment, free radicals, etc., while complexation occurs even under milder conditions, such as neutral pH and room temperature, resulting in weaker and reversible interactions. Despite the significant increase in the number of studies on protein-polyphenol interactions in recent years, there is no clear consensus in the previous literature on whether covalent or non-covalent bonding provides better stability under different processing conditions. In emulsion-based food systems, protein-polyphenol assemblies can function dually as antioxidant-emulsifiers, where proteins provide the emulsifying ability, and polyphenols contribute antioxidant activity. This effect is due to the positioning of these assemblies in the oil-water interface. Understanding the distinct roles and conditions of protein-polyphenol interactions is crucial for optimizing their use in designing stable, functional colloidal systems, particularly in emulsion-based foods.</div></div>\",\"PeriodicalId\":320,\"journal\":{\"name\":\"Food Hydrocolloids\",\"volume\":\"169 \",\"pages\":\"Article 111590\"},\"PeriodicalIF\":11.0000,\"publicationDate\":\"2025-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Hydrocolloids\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0268005X25005508\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Hydrocolloids","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0268005X25005508","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Protein-polyphenol complexation vs. conjugation: A review on mechanisms, functional differences, and antioxidant-emulsifier roles
The interaction between proteins and polyphenols has gained attention for improving the stability and physicochemical properties of colloidal systems. This review focuses on recent advances in their interaction mechanisms and functional impacts. Protein-polyphenol assemblies are formed through covalent bonding (i.e., conjugation) or non-covalent bonding (i.e., complexation). These interactions may lead to distinct functionalities and properties influenced by environmental conditions. The conjugation is usually initiated by the oxidation of polyphenols through alkaline treatment, free radicals, etc., while complexation occurs even under milder conditions, such as neutral pH and room temperature, resulting in weaker and reversible interactions. Despite the significant increase in the number of studies on protein-polyphenol interactions in recent years, there is no clear consensus in the previous literature on whether covalent or non-covalent bonding provides better stability under different processing conditions. In emulsion-based food systems, protein-polyphenol assemblies can function dually as antioxidant-emulsifiers, where proteins provide the emulsifying ability, and polyphenols contribute antioxidant activity. This effect is due to the positioning of these assemblies in the oil-water interface. Understanding the distinct roles and conditions of protein-polyphenol interactions is crucial for optimizing their use in designing stable, functional colloidal systems, particularly in emulsion-based foods.
期刊介绍:
Food Hydrocolloids publishes original and innovative research focused on the characterization, functional properties, and applications of hydrocolloid materials used in food products. These hydrocolloids, defined as polysaccharides and proteins of commercial importance, are added to control aspects such as texture, stability, rheology, and sensory properties. The research's primary emphasis should be on the hydrocolloids themselves, with thorough descriptions of their source, nature, and physicochemical characteristics. Manuscripts are expected to clearly outline specific aims and objectives, include a fundamental discussion of research findings at the molecular level, and address the significance of the results. Studies on hydrocolloids in complex formulations should concentrate on their overall properties and mechanisms of action, while simple formulation development studies may not be considered for publication.
The main areas of interest are:
-Chemical and physicochemical characterisation
Thermal properties including glass transitions and conformational changes-
Rheological properties including viscosity, viscoelastic properties and gelation behaviour-
The influence on organoleptic properties-
Interfacial properties including stabilisation of dispersions, emulsions and foams-
Film forming properties with application to edible films and active packaging-
Encapsulation and controlled release of active compounds-
The influence on health including their role as dietary fibre-
Manipulation of hydrocolloid structure and functionality through chemical, biochemical and physical processes-
New hydrocolloids and hydrocolloid sources of commercial potential.
The Journal also publishes Review articles that provide an overview of the latest developments in topics of specific interest to researchers in this field of activity.