基于差分演化的海上风电机组短期预测性维护优化方法

IF 5.5 2区 工程技术 Q1 ENGINEERING, CIVIL
Wanwan Zhang, Jørn Vatn, Adil Rasheed
{"title":"基于差分演化的海上风电机组短期预测性维护优化方法","authors":"Wanwan Zhang,&nbsp;Jørn Vatn,&nbsp;Adil Rasheed","doi":"10.1016/j.oceaneng.2025.121507","DOIUrl":null,"url":null,"abstract":"<div><div>Offshore wind energy is growing rapidly but faces high maintenance costs. To implement predictive maintenance (PdM) in this field, this paper proposes a novel optimization approach for short-term PdM of a single offshore wind turbine (OWT). It combines an adaptive differential evolution algorithm with optional archive (JADE) and Gaussian process regression (GPR) models through a reinforcement learning (RL) framework. Temperatures from four OWTs are processed by an autoencoder to create a database. Using this database, a case study involving an OWT with five components is conducted. First, GPR models generate probabilistic remaining useful life (RUL) predictions for each component. An RL agent then simulates future degradation trajectories based on these predictions. JADE is applied across different scenarios to optimize maintenance by interacting with the virtual environment, considering external factors such as electricity and component prices, wind speeds, and maintenance duration. Results show that the maintenance plan based on pessimistic RUL forecasts exhibits the highest robustness across scenarios. This approach delivers highly precise and robust PdM schedules under prognostic uncertainty. It bridges a critical gap in integrating failure prognostics with maintenance optimization for OWTs.</div></div>","PeriodicalId":19403,"journal":{"name":"Ocean Engineering","volume":"335 ","pages":"Article 121507"},"PeriodicalIF":5.5000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A differential evolution based approach for short-term predictive maintenance optimization of an offshore wind turbine\",\"authors\":\"Wanwan Zhang,&nbsp;Jørn Vatn,&nbsp;Adil Rasheed\",\"doi\":\"10.1016/j.oceaneng.2025.121507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Offshore wind energy is growing rapidly but faces high maintenance costs. To implement predictive maintenance (PdM) in this field, this paper proposes a novel optimization approach for short-term PdM of a single offshore wind turbine (OWT). It combines an adaptive differential evolution algorithm with optional archive (JADE) and Gaussian process regression (GPR) models through a reinforcement learning (RL) framework. Temperatures from four OWTs are processed by an autoencoder to create a database. Using this database, a case study involving an OWT with five components is conducted. First, GPR models generate probabilistic remaining useful life (RUL) predictions for each component. An RL agent then simulates future degradation trajectories based on these predictions. JADE is applied across different scenarios to optimize maintenance by interacting with the virtual environment, considering external factors such as electricity and component prices, wind speeds, and maintenance duration. Results show that the maintenance plan based on pessimistic RUL forecasts exhibits the highest robustness across scenarios. This approach delivers highly precise and robust PdM schedules under prognostic uncertainty. It bridges a critical gap in integrating failure prognostics with maintenance optimization for OWTs.</div></div>\",\"PeriodicalId\":19403,\"journal\":{\"name\":\"Ocean Engineering\",\"volume\":\"335 \",\"pages\":\"Article 121507\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ocean Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0029801825012077\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029801825012077","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

海上风能发展迅速,但面临着高昂的维护成本。为了在该领域实现预测性维护,本文提出了一种针对单台海上风电机组短期预测性维护的优化方法。它通过强化学习(RL)框架将自适应差分进化算法与可选存档(JADE)和高斯过程回归(GPR)模型相结合。来自四个wt的温度由一个自动编码器处理以创建一个数据库。使用该数据库,进行了一个包含五个组件的OWT的案例研究。首先,GPR模型生成每个组件的概率剩余使用寿命(RUL)预测。然后,RL代理根据这些预测模拟未来的退化轨迹。JADE应用于不同场景,通过与虚拟环境的交互来优化维护,同时考虑电力和组件价格、风速和维护时间等外部因素。结果表明,基于RUL悲观预测的维修计划具有最高的鲁棒性。这种方法在预测不确定的情况下提供了高度精确和健壮的PdM时间表。它在集成故障预测和维护优化方面填补了一个关键的空白。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A differential evolution based approach for short-term predictive maintenance optimization of an offshore wind turbine
Offshore wind energy is growing rapidly but faces high maintenance costs. To implement predictive maintenance (PdM) in this field, this paper proposes a novel optimization approach for short-term PdM of a single offshore wind turbine (OWT). It combines an adaptive differential evolution algorithm with optional archive (JADE) and Gaussian process regression (GPR) models through a reinforcement learning (RL) framework. Temperatures from four OWTs are processed by an autoencoder to create a database. Using this database, a case study involving an OWT with five components is conducted. First, GPR models generate probabilistic remaining useful life (RUL) predictions for each component. An RL agent then simulates future degradation trajectories based on these predictions. JADE is applied across different scenarios to optimize maintenance by interacting with the virtual environment, considering external factors such as electricity and component prices, wind speeds, and maintenance duration. Results show that the maintenance plan based on pessimistic RUL forecasts exhibits the highest robustness across scenarios. This approach delivers highly precise and robust PdM schedules under prognostic uncertainty. It bridges a critical gap in integrating failure prognostics with maintenance optimization for OWTs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ocean Engineering
Ocean Engineering 工程技术-工程:大洋
CiteScore
7.30
自引率
34.00%
发文量
2379
审稿时长
8.1 months
期刊介绍: Ocean Engineering provides a medium for the publication of original research and development work in the field of ocean engineering. Ocean Engineering seeks papers in the following topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信