串联催化CO2电还原通过在铜球上原位重组银纳米颗粒

IF 2.7 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yue Li , Jingjing Wu , Hongyu Pan , Jing Ling , Qian Zhang , BiYun Min , YiFan Wang , Xianglong Lu
{"title":"串联催化CO2电还原通过在铜球上原位重组银纳米颗粒","authors":"Yue Li ,&nbsp;Jingjing Wu ,&nbsp;Hongyu Pan ,&nbsp;Jing Ling ,&nbsp;Qian Zhang ,&nbsp;BiYun Min ,&nbsp;YiFan Wang ,&nbsp;Xianglong Lu","doi":"10.1016/j.matlet.2025.138847","DOIUrl":null,"url":null,"abstract":"<div><div>The rational design of tandem catalysts with spatially separated active sites is crucial for efficiently converting CO<sub>2</sub> to ethylene. In this study, a Cu@Np-Ag<sub>x.</sub> bimetallic tandem catalyst, with Ag nanoparticles anchored on Cu microspheres, was fabricated via potentiostatic deposition and electrochemical displacement. With 1.4 % surface Ag atom percentage, it exhibits a 36 % ethylene Faraday efficiency at −1.45 V vs. RHE, nine times higher than that of Cu/C, while reducing the hydrogen evolution reaction to 29 %. Based on DFT and in-situ Raman studies, this is mainly ascribed to the copper-silver synergy that optimizes the electron transfer route, enhances the adsorption of *CO, prompts the asymmetric *CO-CHO coupling and the cleavage of the O-C bond in the *OCHCH<sub>2</sub> intermediate, thereby enhancing the generation of ethylene.</div></div>","PeriodicalId":384,"journal":{"name":"Materials Letters","volume":"397 ","pages":"Article 138847"},"PeriodicalIF":2.7000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tandem catalytic CO2 electroreduction via in situ restructured silver nanoparticles on copper spheres\",\"authors\":\"Yue Li ,&nbsp;Jingjing Wu ,&nbsp;Hongyu Pan ,&nbsp;Jing Ling ,&nbsp;Qian Zhang ,&nbsp;BiYun Min ,&nbsp;YiFan Wang ,&nbsp;Xianglong Lu\",\"doi\":\"10.1016/j.matlet.2025.138847\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The rational design of tandem catalysts with spatially separated active sites is crucial for efficiently converting CO<sub>2</sub> to ethylene. In this study, a Cu@Np-Ag<sub>x.</sub> bimetallic tandem catalyst, with Ag nanoparticles anchored on Cu microspheres, was fabricated via potentiostatic deposition and electrochemical displacement. With 1.4 % surface Ag atom percentage, it exhibits a 36 % ethylene Faraday efficiency at −1.45 V vs. RHE, nine times higher than that of Cu/C, while reducing the hydrogen evolution reaction to 29 %. Based on DFT and in-situ Raman studies, this is mainly ascribed to the copper-silver synergy that optimizes the electron transfer route, enhances the adsorption of *CO, prompts the asymmetric *CO-CHO coupling and the cleavage of the O-C bond in the *OCHCH<sub>2</sub> intermediate, thereby enhancing the generation of ethylene.</div></div>\",\"PeriodicalId\":384,\"journal\":{\"name\":\"Materials Letters\",\"volume\":\"397 \",\"pages\":\"Article 138847\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167577X25008766\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Letters","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167577X25008766","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

合理设计具有空间分离活性位点的串联催化剂是高效转化二氧化碳为乙烯的关键。在这项研究中,一个Cu@Np-Agx。采用恒电位沉积和电化学位移法制备了铜微球固载银纳米粒子的双金属串联催化剂。当表面银原子百分比为1.4%时,在−1.45 V时,乙烯法拉第效率为36%,比Cu/C高9倍,而析氢反应降低到29%。基于DFT和原位拉曼研究,这主要归因于铜银协同作用优化了电子转移路线,增强了*CO的吸附,促进了*OCHCH2中间体中*CO- cho的不对称偶联和O-C键的断裂,从而促进了乙烯的生成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tandem catalytic CO2 electroreduction via in situ restructured silver nanoparticles on copper spheres
The rational design of tandem catalysts with spatially separated active sites is crucial for efficiently converting CO2 to ethylene. In this study, a Cu@Np-Agx. bimetallic tandem catalyst, with Ag nanoparticles anchored on Cu microspheres, was fabricated via potentiostatic deposition and electrochemical displacement. With 1.4 % surface Ag atom percentage, it exhibits a 36 % ethylene Faraday efficiency at −1.45 V vs. RHE, nine times higher than that of Cu/C, while reducing the hydrogen evolution reaction to 29 %. Based on DFT and in-situ Raman studies, this is mainly ascribed to the copper-silver synergy that optimizes the electron transfer route, enhances the adsorption of *CO, prompts the asymmetric *CO-CHO coupling and the cleavage of the O-C bond in the *OCHCH2 intermediate, thereby enhancing the generation of ethylene.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Letters
Materials Letters 工程技术-材料科学:综合
CiteScore
5.60
自引率
3.30%
发文量
1948
审稿时长
50 days
期刊介绍: Materials Letters has an open access mirror journal Materials Letters: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. Materials Letters is dedicated to publishing novel, cutting edge reports of broad interest to the materials community. The journal provides a forum for materials scientists and engineers, physicists, and chemists to rapidly communicate on the most important topics in the field of materials. Contributions include, but are not limited to, a variety of topics such as: • Materials - Metals and alloys, amorphous solids, ceramics, composites, polymers, semiconductors • Applications - Structural, opto-electronic, magnetic, medical, MEMS, sensors, smart • Characterization - Analytical, microscopy, scanning probes, nanoscopic, optical, electrical, magnetic, acoustic, spectroscopic, diffraction • Novel Materials - Micro and nanostructures (nanowires, nanotubes, nanoparticles), nanocomposites, thin films, superlattices, quantum dots. • Processing - Crystal growth, thin film processing, sol-gel processing, mechanical processing, assembly, nanocrystalline processing. • Properties - Mechanical, magnetic, optical, electrical, ferroelectric, thermal, interfacial, transport, thermodynamic • Synthesis - Quenching, solid state, solidification, solution synthesis, vapor deposition, high pressure, explosive
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信