等离子体物理中超几何孤子波的辅助方程计算分析及传播行为

Q1 Mathematics
M. Al-Amin , M. Nurul Islam , M. Ali Akbar
{"title":"等离子体物理中超几何孤子波的辅助方程计算分析及传播行为","authors":"M. Al-Amin ,&nbsp;M. Nurul Islam ,&nbsp;M. Ali Akbar","doi":"10.1016/j.padiff.2025.101231","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigate the widely used nonlinear fractional Kairat-II (K-II) model, which is used to explain the differential geometry of curves and equivalence aspects. Numerous vital incidents can be analyzed via the Kairat-II (K-II) model, likely the optical pulse propagation behaviors inside optical fibers and plasma. The Kairat-II (K-II) model is a vital mathematical model in the domain of science and engineering applications. This article computationally and analytically investigates the nonlinear fractional Kairat-II (K-II) model by using the auxiliary equation (AE) method through the renowned truncated M-fractional derivative. We have established several newer, practical, efficient and comprehensive closed form traveling wave solutions of the model. Moreover, we examine the influence of fractional parameters on signal transmission through optical fibers and other related wave propagations by generating 3D graphs of the established solutions. The established results confirm the effectiveness, efficiency and reliability of the considered method.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"14 ","pages":"Article 101231"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational analysis and wave propagation behavior of hyper-geometric soliton waves in plasma physics via the auxiliary equation method\",\"authors\":\"M. Al-Amin ,&nbsp;M. Nurul Islam ,&nbsp;M. Ali Akbar\",\"doi\":\"10.1016/j.padiff.2025.101231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigate the widely used nonlinear fractional Kairat-II (K-II) model, which is used to explain the differential geometry of curves and equivalence aspects. Numerous vital incidents can be analyzed via the Kairat-II (K-II) model, likely the optical pulse propagation behaviors inside optical fibers and plasma. The Kairat-II (K-II) model is a vital mathematical model in the domain of science and engineering applications. This article computationally and analytically investigates the nonlinear fractional Kairat-II (K-II) model by using the auxiliary equation (AE) method through the renowned truncated M-fractional derivative. We have established several newer, practical, efficient and comprehensive closed form traveling wave solutions of the model. Moreover, we examine the influence of fractional parameters on signal transmission through optical fibers and other related wave propagations by generating 3D graphs of the established solutions. The established results confirm the effectiveness, efficiency and reliability of the considered method.</div></div>\",\"PeriodicalId\":34531,\"journal\":{\"name\":\"Partial Differential Equations in Applied Mathematics\",\"volume\":\"14 \",\"pages\":\"Article 101231\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Partial Differential Equations in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666818125001585\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818125001585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了广泛使用的非线性分数阶Kairat-II (K-II)模型,该模型用于解释曲线的微分几何和等价方面。许多重要事件可以通过Kairat-II (K-II)模型进行分析,很可能是光纤和等离子体内部的光脉冲传播行为。Kairat-II (K-II)模型是科学和工程应用领域的重要数学模型。本文通过著名的截断m -分数阶导数,利用辅助方程(AE)方法对非线性分数阶Kairat-II (K-II)模型进行了计算和分析研究。我们建立了几个更新、实用、高效、全面的闭行波模型解。此外,我们通过生成已建立的解的三维图形来检查分数参数对光纤信号传输和其他相关波传播的影响。建立的结果证实了所考虑方法的有效性、高效性和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computational analysis and wave propagation behavior of hyper-geometric soliton waves in plasma physics via the auxiliary equation method
This study investigate the widely used nonlinear fractional Kairat-II (K-II) model, which is used to explain the differential geometry of curves and equivalence aspects. Numerous vital incidents can be analyzed via the Kairat-II (K-II) model, likely the optical pulse propagation behaviors inside optical fibers and plasma. The Kairat-II (K-II) model is a vital mathematical model in the domain of science and engineering applications. This article computationally and analytically investigates the nonlinear fractional Kairat-II (K-II) model by using the auxiliary equation (AE) method through the renowned truncated M-fractional derivative. We have established several newer, practical, efficient and comprehensive closed form traveling wave solutions of the model. Moreover, we examine the influence of fractional parameters on signal transmission through optical fibers and other related wave propagations by generating 3D graphs of the established solutions. The established results confirm the effectiveness, efficiency and reliability of the considered method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信