Qingxin Yang, Elizaveta A. Fedorova, Dong-Bo Cao, Erisa Saraçi, Vita A. Kondratenko, Carsten R. Kreyenschulte, Henrik Lund, Stephan Bartling, Jana Weiß, Dmitry E. Doronkin, Jan-Dierk Grunwaldt, Angelika Brückner, Haijun Jiao, Evgenii V. Kondratenko
{"title":"了解锰调铁基催化剂在控制CO2加氢制烯烃选择性中的作用","authors":"Qingxin Yang, Elizaveta A. Fedorova, Dong-Bo Cao, Erisa Saraçi, Vita A. Kondratenko, Carsten R. Kreyenschulte, Henrik Lund, Stephan Bartling, Jana Weiß, Dmitry E. Doronkin, Jan-Dierk Grunwaldt, Angelika Brückner, Haijun Jiao, Evgenii V. Kondratenko","doi":"10.1038/s41929-025-01334-5","DOIUrl":null,"url":null,"abstract":"<p>For CO<sub>2</sub> hydrogenation over iron-based catalysts, revealing the promoting effect of manganese and the nature of catalytically active sites remains a challenge that hinders targeted catalyst design. Here we elucidate the manganese-modulated restructuring of such catalysts during preconditioning and CO<sub>2</sub> hydrogenation using in situ X-ray absorption spectroscopy. The reaction-induced decoration of the surface of iron carbide with a MnO-containing layer is essential to hinder methane formation in favour of C<sub>2</sub>–C<sub>4</sub> olefins and C<sub>5+</sub> hydrocarbons. The selectivity changes were rationalized via spatially resolved steady-state and time-resolved (micro)kinetic tests combined with density functional theory calculations. The promoter affects the ability of iron carbide to generate surface species from H<sub>2</sub>, CO<sub>2</sub> and C<sub>2</sub>H<sub>4</sub>, thus controlling the surface C/H ratio, which is decisive for product selectivity. Consequently, the design of efficient multi-component heterogeneous catalysts requires a thorough understanding of the optimal catalyst architecture and, in particular, how to generate and stabilize it under reaction conditions.</p><figure></figure>","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"8 1","pages":""},"PeriodicalIF":42.8000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding Mn-modulated restructuring of Fe-based catalysts for controlling selectivity in CO2 hydrogenation to olefins\",\"authors\":\"Qingxin Yang, Elizaveta A. Fedorova, Dong-Bo Cao, Erisa Saraçi, Vita A. Kondratenko, Carsten R. Kreyenschulte, Henrik Lund, Stephan Bartling, Jana Weiß, Dmitry E. Doronkin, Jan-Dierk Grunwaldt, Angelika Brückner, Haijun Jiao, Evgenii V. Kondratenko\",\"doi\":\"10.1038/s41929-025-01334-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For CO<sub>2</sub> hydrogenation over iron-based catalysts, revealing the promoting effect of manganese and the nature of catalytically active sites remains a challenge that hinders targeted catalyst design. Here we elucidate the manganese-modulated restructuring of such catalysts during preconditioning and CO<sub>2</sub> hydrogenation using in situ X-ray absorption spectroscopy. The reaction-induced decoration of the surface of iron carbide with a MnO-containing layer is essential to hinder methane formation in favour of C<sub>2</sub>–C<sub>4</sub> olefins and C<sub>5+</sub> hydrocarbons. The selectivity changes were rationalized via spatially resolved steady-state and time-resolved (micro)kinetic tests combined with density functional theory calculations. The promoter affects the ability of iron carbide to generate surface species from H<sub>2</sub>, CO<sub>2</sub> and C<sub>2</sub>H<sub>4</sub>, thus controlling the surface C/H ratio, which is decisive for product selectivity. Consequently, the design of efficient multi-component heterogeneous catalysts requires a thorough understanding of the optimal catalyst architecture and, in particular, how to generate and stabilize it under reaction conditions.</p><figure></figure>\",\"PeriodicalId\":18845,\"journal\":{\"name\":\"Nature Catalysis\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":42.8000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1038/s41929-025-01334-5\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Catalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s41929-025-01334-5","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Understanding Mn-modulated restructuring of Fe-based catalysts for controlling selectivity in CO2 hydrogenation to olefins
For CO2 hydrogenation over iron-based catalysts, revealing the promoting effect of manganese and the nature of catalytically active sites remains a challenge that hinders targeted catalyst design. Here we elucidate the manganese-modulated restructuring of such catalysts during preconditioning and CO2 hydrogenation using in situ X-ray absorption spectroscopy. The reaction-induced decoration of the surface of iron carbide with a MnO-containing layer is essential to hinder methane formation in favour of C2–C4 olefins and C5+ hydrocarbons. The selectivity changes were rationalized via spatially resolved steady-state and time-resolved (micro)kinetic tests combined with density functional theory calculations. The promoter affects the ability of iron carbide to generate surface species from H2, CO2 and C2H4, thus controlling the surface C/H ratio, which is decisive for product selectivity. Consequently, the design of efficient multi-component heterogeneous catalysts requires a thorough understanding of the optimal catalyst architecture and, in particular, how to generate and stabilize it under reaction conditions.
期刊介绍:
Nature Catalysis serves as a platform for researchers across chemistry and related fields, focusing on homogeneous catalysis, heterogeneous catalysis, and biocatalysts, encompassing both fundamental and applied studies. With a particular emphasis on advancing sustainable industries and processes, the journal provides comprehensive coverage of catalysis research, appealing to scientists, engineers, and researchers in academia and industry.
Maintaining the high standards of the Nature brand, Nature Catalysis boasts a dedicated team of professional editors, rigorous peer-review processes, and swift publication times, ensuring editorial independence and quality. The journal publishes work spanning heterogeneous catalysis, homogeneous catalysis, and biocatalysis, covering areas such as catalytic synthesis, mechanisms, characterization, computational studies, nanoparticle catalysis, electrocatalysis, photocatalysis, environmental catalysis, asymmetric catalysis, and various forms of organocatalysis.