{"title":"3D石墨烯用于能源技术:化学策略和工业挑战","authors":"Bibhuti Kumar Jha, Jong-Chul Yoon, Ji-Hyun Jang","doi":"10.1021/accountsmr.4c00381","DOIUrl":null,"url":null,"abstract":"Graphene, a groundbreaking two-dimensional (2D) material, has attracted significant attention across various fields due to its exceptional properties. However, 2D graphene sheets tend to restack or agglomerate, reducing their performance and active surface area. To overcome these limitations and expand graphene’s potential applications, researchers have developed three-dimensional (3D) graphene structures with diverse architectures, including 3D graphene fibers, foams, aerogels, hydrogels, tubes, and cages. These structures, along with modifications such as functionalization, doping, preintercalation, and compositing, prevent stacking and enhance specific properties for targeted applications.","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":"157 1","pages":""},"PeriodicalIF":14.0000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D Graphene for Energy Technologies: Chemical Strategies and Industrial Challenges\",\"authors\":\"Bibhuti Kumar Jha, Jong-Chul Yoon, Ji-Hyun Jang\",\"doi\":\"10.1021/accountsmr.4c00381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graphene, a groundbreaking two-dimensional (2D) material, has attracted significant attention across various fields due to its exceptional properties. However, 2D graphene sheets tend to restack or agglomerate, reducing their performance and active surface area. To overcome these limitations and expand graphene’s potential applications, researchers have developed three-dimensional (3D) graphene structures with diverse architectures, including 3D graphene fibers, foams, aerogels, hydrogels, tubes, and cages. These structures, along with modifications such as functionalization, doping, preintercalation, and compositing, prevent stacking and enhance specific properties for targeted applications.\",\"PeriodicalId\":72040,\"journal\":{\"name\":\"Accounts of materials research\",\"volume\":\"157 1\",\"pages\":\"\"},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of materials research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/accountsmr.4c00381\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of materials research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/accountsmr.4c00381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
3D Graphene for Energy Technologies: Chemical Strategies and Industrial Challenges
Graphene, a groundbreaking two-dimensional (2D) material, has attracted significant attention across various fields due to its exceptional properties. However, 2D graphene sheets tend to restack or agglomerate, reducing their performance and active surface area. To overcome these limitations and expand graphene’s potential applications, researchers have developed three-dimensional (3D) graphene structures with diverse architectures, including 3D graphene fibers, foams, aerogels, hydrogels, tubes, and cages. These structures, along with modifications such as functionalization, doping, preintercalation, and compositing, prevent stacking and enhance specific properties for targeted applications.