无剪切静态微倾斜薄膜形成(SMICFF):重力和马兰戈尼驱动制备高性能有机半导体

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jian Deng, Kangzhe Liu, Xiyue Yuan, Ding Tang, Shaohua Tong, Liqun Liu, Zengqi Xie, Chunhui Duan, Yuguang Ma
{"title":"无剪切静态微倾斜薄膜形成(SMICFF):重力和马兰戈尼驱动制备高性能有机半导体","authors":"Jian Deng, Kangzhe Liu, Xiyue Yuan, Ding Tang, Shaohua Tong, Liqun Liu, Zengqi Xie, Chunhui Duan, Yuguang Ma","doi":"10.1002/adfm.202506218","DOIUrl":null,"url":null,"abstract":"The advancement of organic electronics necessitates innovative film formation technologies to address challenges in crystallinity control, uniformity, and reproducibility. This study introduces static micro-inclined film formation (SMICFF), a novel technique inspired by natural fluid dynamics, to fabricate high-performance organic semiconductor thin films. By leveraging gravity and Marangoni flow, SMICFF enables precise control over molecular alignment and film uniformity, eliminating the need for external shear forces. Using two model materials poly(3,3′-difluoro-5,5″″-dimethyl-3″,4″″-bis(2-octyldodecyl)-2,2′:5′,2″:5″,2″′:5″′,2″″-quinquethiophene) (P5TCN-2F) and low-solubility poly(4-(3-(3-decylpentadecyl)-3″,4′-difluoro-5″-methyl-[2,2′:5′,2″-terthiophen]-5-yl)-7-(4-(3-decylpentadecyl)-5-methylthiophen-2-yl)benzo[c][1,2,5]thiadiazole-5,6-dicarbonitrile) (PDCBT-DP2F), SMICFF-produced films achieved carrier mobilities of 2.41 cm<sup>2</sup>/V s and 0.31 cm<sup>2</sup>/V s, respectively, representing over 5-fold enhancements compared to blade-coated, bar-coated, and drop-cast counterparts. Statistical analysis revealed Gaussian-distributed device parameters with reduced batch-to-batch variability, underscoring SMICFF′s inherent optimization capability. The technique′s compatibility with high-surface-tension systems is demonstrated through solvent screening and temperature-controlled evaporation protocols. These findings establish SMICFF as a robust platform for the rapid evaluation of materials and the high-throughput fabrication of flexible electronics, overcoming the critical limitations of traditional solution-processing methods.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"47 1","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shear-Free Static Micro-Inclined Film Formation (SMICFF): Gravity and Marangoni-Driven Fabrication of High-Performance Organic Semiconductors\",\"authors\":\"Jian Deng, Kangzhe Liu, Xiyue Yuan, Ding Tang, Shaohua Tong, Liqun Liu, Zengqi Xie, Chunhui Duan, Yuguang Ma\",\"doi\":\"10.1002/adfm.202506218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The advancement of organic electronics necessitates innovative film formation technologies to address challenges in crystallinity control, uniformity, and reproducibility. This study introduces static micro-inclined film formation (SMICFF), a novel technique inspired by natural fluid dynamics, to fabricate high-performance organic semiconductor thin films. By leveraging gravity and Marangoni flow, SMICFF enables precise control over molecular alignment and film uniformity, eliminating the need for external shear forces. Using two model materials poly(3,3′-difluoro-5,5″″-dimethyl-3″,4″″-bis(2-octyldodecyl)-2,2′:5′,2″:5″,2″′:5″′,2″″-quinquethiophene) (P5TCN-2F) and low-solubility poly(4-(3-(3-decylpentadecyl)-3″,4′-difluoro-5″-methyl-[2,2′:5′,2″-terthiophen]-5-yl)-7-(4-(3-decylpentadecyl)-5-methylthiophen-2-yl)benzo[c][1,2,5]thiadiazole-5,6-dicarbonitrile) (PDCBT-DP2F), SMICFF-produced films achieved carrier mobilities of 2.41 cm<sup>2</sup>/V s and 0.31 cm<sup>2</sup>/V s, respectively, representing over 5-fold enhancements compared to blade-coated, bar-coated, and drop-cast counterparts. Statistical analysis revealed Gaussian-distributed device parameters with reduced batch-to-batch variability, underscoring SMICFF′s inherent optimization capability. The technique′s compatibility with high-surface-tension systems is demonstrated through solvent screening and temperature-controlled evaporation protocols. These findings establish SMICFF as a robust platform for the rapid evaluation of materials and the high-throughput fabrication of flexible electronics, overcoming the critical limitations of traditional solution-processing methods.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202506218\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202506218","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

有机电子学的进步需要创新的薄膜形成技术来解决结晶度控制、均匀性和可重复性方面的挑战。本文介绍了一种受自然流体动力学启发的新技术——静态微倾斜薄膜形成技术(SMICFF),用于制备高性能有机半导体薄膜。通过利用重力和Marangoni流,SMICFF可以精确控制分子排列和膜均匀性,从而消除了外部剪切力的需要。使用两个模型材料聚(3、3’-difluoro-5 5”“-dimethyl-3”,4”“bis (2-octyldodecyl) 2, 2: 5, 2”:5“,2”:5“,2”“-quinquethiophene) (P5TCN-2F)和low-solubility聚(4 - (3 - (3-decylpentadecyl) 3、4”-difluoro-5甲基-(2,2:5,2”-terthiophen] 5-yl) 7 - (4 - (3-decylpentadecyl) 5-methylthiophen-2-yl)苯并[c][1、2、5]thiadiazole-5 6-dicarbonitrile) (PDCBT-DP2F) SMICFF-produced电影2.41厘米2 / V的实现载体的机动性和0.31厘米2 / V年代,分别代表超过5倍的增强相比,刀片涂层,棒涂层,和滴铸对应物。统计分析显示高斯分布的器件参数减少了批次间的可变性,强调了SMICFF固有的优化能力。通过溶剂筛选和温控蒸发方案,证明了该技术与高表面张力系统的兼容性。这些发现使SMICFF成为快速评估材料和柔性电子产品高通量制造的强大平台,克服了传统溶液处理方法的关键限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Shear-Free Static Micro-Inclined Film Formation (SMICFF): Gravity and Marangoni-Driven Fabrication of High-Performance Organic Semiconductors

Shear-Free Static Micro-Inclined Film Formation (SMICFF): Gravity and Marangoni-Driven Fabrication of High-Performance Organic Semiconductors
The advancement of organic electronics necessitates innovative film formation technologies to address challenges in crystallinity control, uniformity, and reproducibility. This study introduces static micro-inclined film formation (SMICFF), a novel technique inspired by natural fluid dynamics, to fabricate high-performance organic semiconductor thin films. By leveraging gravity and Marangoni flow, SMICFF enables precise control over molecular alignment and film uniformity, eliminating the need for external shear forces. Using two model materials poly(3,3′-difluoro-5,5″″-dimethyl-3″,4″″-bis(2-octyldodecyl)-2,2′:5′,2″:5″,2″′:5″′,2″″-quinquethiophene) (P5TCN-2F) and low-solubility poly(4-(3-(3-decylpentadecyl)-3″,4′-difluoro-5″-methyl-[2,2′:5′,2″-terthiophen]-5-yl)-7-(4-(3-decylpentadecyl)-5-methylthiophen-2-yl)benzo[c][1,2,5]thiadiazole-5,6-dicarbonitrile) (PDCBT-DP2F), SMICFF-produced films achieved carrier mobilities of 2.41 cm2/V s and 0.31 cm2/V s, respectively, representing over 5-fold enhancements compared to blade-coated, bar-coated, and drop-cast counterparts. Statistical analysis revealed Gaussian-distributed device parameters with reduced batch-to-batch variability, underscoring SMICFF′s inherent optimization capability. The technique′s compatibility with high-surface-tension systems is demonstrated through solvent screening and temperature-controlled evaporation protocols. These findings establish SMICFF as a robust platform for the rapid evaluation of materials and the high-throughput fabrication of flexible electronics, overcoming the critical limitations of traditional solution-processing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信