La空位对LaFeO3纳米片表面点阵氧的活化促进催化和能量转化

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-06-02 DOI:10.1002/smll.202502049
Jiangpeng Wang, Yi Liu, Jinxing Mi, Yajun Ding, Liangzhu Zhang, Xiaoming Su, Jiaxin Ma, Yi Wang, Yuejiao Li, Yunyun Xu, Zhong‐Shuai Wu
{"title":"La空位对LaFeO3纳米片表面点阵氧的活化促进催化和能量转化","authors":"Jiangpeng Wang, Yi Liu, Jinxing Mi, Yajun Ding, Liangzhu Zhang, Xiaoming Su, Jiaxin Ma, Yi Wang, Yuejiao Li, Yunyun Xu, Zhong‐Shuai Wu","doi":"10.1002/smll.202502049","DOIUrl":null,"url":null,"abstract":"Regulation of A‐site vacancy and activation of lattice oxygen (O<jats:sub>latt</jats:sub>) are crucial for maximizing the chemical properties of perovskites (ABO<jats:sub>3</jats:sub>) catalysts for functional applications. Herein, an effective La vacancy (V<jats:sub>La</jats:sub>) creation strategy is reported to activate surface O<jats:sub>latt</jats:sub> species over 2D ultrathin LaFeO<jats:sub>3</jats:sub> (2D‐U‐LFO) nanosheets by introducing urea, which can precisely modulate their physicochemical properties and thus remarkably enhance catalysis and energy conversion. The contained surface V<jats:sub>La</jats:sub> of 2D‐U‐LFO nanosheet generates more reduced Fe─O bonding and activated O<jats:sub>latt</jats:sub> species, thereby the resulted 2D‐U‐LFO exhibits remarkably improved catalytic oxidation performance than that of pristine LaFeO<jats:sub>3</jats:sub> and bulk LaFeO<jats:sub>3</jats:sub> with activated O<jats:sub>latt</jats:sub> species. Further, 2D‐U‐LFO cathode for Li‐O<jats:sub>2</jats:sub> battery also displays a higher specific capacity of 24251 mAh g<jats:sup>−1</jats:sup> and longer cyclability of 1600 h than pristine LFO (10495 mAh g<jats:sup>−1</jats:sup>, 200 h). It is theoretically revealed that the surface V<jats:sub>La</jats:sub> over LFO can promote Li<jats:sub>2</jats:sub>O<jats:sub>2</jats:sub> adsorption. This proposed strategy will pave a novel avenue to develop vacancy‐meditated ABO<jats:sub>3</jats:sub> in sheet structure for boosting functional applications.","PeriodicalId":228,"journal":{"name":"Small","volume":"4 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Activation of Surface Lattice Oxygen Over Nanosheet LaFeO3 with La Vacancy for Boosting Catalysis and Energy Conversion\",\"authors\":\"Jiangpeng Wang, Yi Liu, Jinxing Mi, Yajun Ding, Liangzhu Zhang, Xiaoming Su, Jiaxin Ma, Yi Wang, Yuejiao Li, Yunyun Xu, Zhong‐Shuai Wu\",\"doi\":\"10.1002/smll.202502049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Regulation of A‐site vacancy and activation of lattice oxygen (O<jats:sub>latt</jats:sub>) are crucial for maximizing the chemical properties of perovskites (ABO<jats:sub>3</jats:sub>) catalysts for functional applications. Herein, an effective La vacancy (V<jats:sub>La</jats:sub>) creation strategy is reported to activate surface O<jats:sub>latt</jats:sub> species over 2D ultrathin LaFeO<jats:sub>3</jats:sub> (2D‐U‐LFO) nanosheets by introducing urea, which can precisely modulate their physicochemical properties and thus remarkably enhance catalysis and energy conversion. The contained surface V<jats:sub>La</jats:sub> of 2D‐U‐LFO nanosheet generates more reduced Fe─O bonding and activated O<jats:sub>latt</jats:sub> species, thereby the resulted 2D‐U‐LFO exhibits remarkably improved catalytic oxidation performance than that of pristine LaFeO<jats:sub>3</jats:sub> and bulk LaFeO<jats:sub>3</jats:sub> with activated O<jats:sub>latt</jats:sub> species. Further, 2D‐U‐LFO cathode for Li‐O<jats:sub>2</jats:sub> battery also displays a higher specific capacity of 24251 mAh g<jats:sup>−1</jats:sup> and longer cyclability of 1600 h than pristine LFO (10495 mAh g<jats:sup>−1</jats:sup>, 200 h). It is theoretically revealed that the surface V<jats:sub>La</jats:sub> over LFO can promote Li<jats:sub>2</jats:sub>O<jats:sub>2</jats:sub> adsorption. This proposed strategy will pave a novel avenue to develop vacancy‐meditated ABO<jats:sub>3</jats:sub> in sheet structure for boosting functional applications.\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smll.202502049\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202502049","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

调节A位空位和活化晶格氧(Olatt)对于最大化钙钛矿(ABO3)催化剂的化学性质至关重要。本文报道了一种有效的La空位(VLa)生成策略,通过引入尿素激活二维超薄LaFeO3 (2D‐U‐LFO)纳米片上的表面Olatt物质,可以精确调节其物理化学性质,从而显著增强催化和能量转换。2D‐U‐LFO纳米片表面含有的VLa产生了更多的Fe─O还原键和活化的Olatt物质,因此所得到的2D‐U‐LFO比原始LaFeO3和活化Olatt物质的散装LaFeO3具有显著提高的催化氧化性能。此外,用于Li - O2电池的2D‐U‐LFO阴极也显示出比原始LFO (10495 mAh g−1,200 h)更高的24251 mAh g−1比容量和1600 h的可循环性。理论上揭示了LFO表面VLa对Li2O2的吸附有促进作用。这一策略将为在薄片结构中开发空位冥想ABO3铺平一条新的道路,以促进功能应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Activation of Surface Lattice Oxygen Over Nanosheet LaFeO3 with La Vacancy for Boosting Catalysis and Energy Conversion
Regulation of A‐site vacancy and activation of lattice oxygen (Olatt) are crucial for maximizing the chemical properties of perovskites (ABO3) catalysts for functional applications. Herein, an effective La vacancy (VLa) creation strategy is reported to activate surface Olatt species over 2D ultrathin LaFeO3 (2D‐U‐LFO) nanosheets by introducing urea, which can precisely modulate their physicochemical properties and thus remarkably enhance catalysis and energy conversion. The contained surface VLa of 2D‐U‐LFO nanosheet generates more reduced Fe─O bonding and activated Olatt species, thereby the resulted 2D‐U‐LFO exhibits remarkably improved catalytic oxidation performance than that of pristine LaFeO3 and bulk LaFeO3 with activated Olatt species. Further, 2D‐U‐LFO cathode for Li‐O2 battery also displays a higher specific capacity of 24251 mAh g−1 and longer cyclability of 1600 h than pristine LFO (10495 mAh g−1, 200 h). It is theoretically revealed that the surface VLa over LFO can promote Li2O2 adsorption. This proposed strategy will pave a novel avenue to develop vacancy‐meditated ABO3 in sheet structure for boosting functional applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信