聚4,7-二-2-噻吩-2,1,3-苯并噻唑光电阴极用于高效光电化学合成过氧化氢

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-06-01 DOI:10.1002/smll.202501593
Qingbo Chang, Wenhui Miao, Xuefei Zhao, Weicheng Zhou, Haibo Chi, Zhendong Feng, Panwang Zhou, Jingying Shi, Can Li
{"title":"聚4,7-二-2-噻吩-2,1,3-苯并噻唑光电阴极用于高效光电化学合成过氧化氢","authors":"Qingbo Chang, Wenhui Miao, Xuefei Zhao, Weicheng Zhou, Haibo Chi, Zhendong Feng, Panwang Zhou, Jingying Shi, Can Li","doi":"10.1002/smll.202501593","DOIUrl":null,"url":null,"abstract":"Photocatalytic/photoelectrochemcial oxygen reduction reaction (ORR) in an aqueous solution offers a promising way for green hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) synthesis. Lots of photocatalysts/photoelectrocatalysts with high activity have been demonstrated up to now. However, the resulting H<sub>2</sub>O<sub>2</sub> concentrations remain low (typically below 10 mmol L<sup>−1</sup>), posing a significant challenge for effective accumulation. Here, it is reported that poly-4,7-Di-2-thienyl-2,1,3-benzothiadiazole (denoted as pS-DBT) photocathode, an organic donor-acceptor-donor (D-A-D) based polymeric semiconductor with wide visible light response (bandgap ≈1.7 eV), generates 2e<sup>−</sup> selectivity beyond 90% with moderate PEC ORR activity in alkaline solution. Impressively, it enables sustained synthesis and accumulation of H<sub>2</sub>O<sub>2</sub> up to 123 mmol L<sup>−1</sup> (≈0.4 wt. %) at 0.65 V versus RHE under simulated visible light (100 mW cm<sup>−2</sup>, λ ≥ 420 nm) for 13 h, which is 20% higher than the previously state-of-the-art polyterthiophene (pTTh) photocathode. This improvement for the pS-DBT is ascribed to a 37% lower decomposition rate regardless of a 20% lower production rate in comparison with those for the pTTh. This work demonstrates a key avenue to enhance steady-state H<sub>2</sub>O<sub>2</sub> concentration by inhibiting parasitic loss of H<sub>2</sub>O<sub>2</sub> due to further reduction reaction during the production process.","PeriodicalId":228,"journal":{"name":"Small","volume":"8 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Poly-4,7-Di-2-Thienyl-2,1,3-Benzothiadiazole Photocathode for Efficient Photoelectrochemical Hydrogen Peroxide Synthesis\",\"authors\":\"Qingbo Chang, Wenhui Miao, Xuefei Zhao, Weicheng Zhou, Haibo Chi, Zhendong Feng, Panwang Zhou, Jingying Shi, Can Li\",\"doi\":\"10.1002/smll.202501593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photocatalytic/photoelectrochemcial oxygen reduction reaction (ORR) in an aqueous solution offers a promising way for green hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) synthesis. Lots of photocatalysts/photoelectrocatalysts with high activity have been demonstrated up to now. However, the resulting H<sub>2</sub>O<sub>2</sub> concentrations remain low (typically below 10 mmol L<sup>−1</sup>), posing a significant challenge for effective accumulation. Here, it is reported that poly-4,7-Di-2-thienyl-2,1,3-benzothiadiazole (denoted as pS-DBT) photocathode, an organic donor-acceptor-donor (D-A-D) based polymeric semiconductor with wide visible light response (bandgap ≈1.7 eV), generates 2e<sup>−</sup> selectivity beyond 90% with moderate PEC ORR activity in alkaline solution. Impressively, it enables sustained synthesis and accumulation of H<sub>2</sub>O<sub>2</sub> up to 123 mmol L<sup>−1</sup> (≈0.4 wt. %) at 0.65 V versus RHE under simulated visible light (100 mW cm<sup>−2</sup>, λ ≥ 420 nm) for 13 h, which is 20% higher than the previously state-of-the-art polyterthiophene (pTTh) photocathode. This improvement for the pS-DBT is ascribed to a 37% lower decomposition rate regardless of a 20% lower production rate in comparison with those for the pTTh. This work demonstrates a key avenue to enhance steady-state H<sub>2</sub>O<sub>2</sub> concentration by inhibiting parasitic loss of H<sub>2</sub>O<sub>2</sub> due to further reduction reaction during the production process.\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smll.202501593\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202501593","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

水溶液中的光催化/光电化学氧还原反应(ORR)为绿色过氧化氢(H2O2)的合成提供了一条很有前途的途径。目前已有大量高活性的光/光电催化剂被证明。然而,产生的H2O2浓度仍然很低(通常低于10 mmol L−1),这对有效积累构成了重大挑战。本文报道了聚4,7-二-2-噻吩-2,1,3-苯并噻唑光电阴极(记为pS-DBT)是一种基于有机给体-受体-给体(D-A-D)的聚合物半导体,具有宽的可见光响应(带隙≈1.7 eV),在碱性溶液中产生超过90%的2e -选择性,具有中等的PEC ORR活性。令人印象深刻的是,它可以在模拟可见光(100 mW cm - 2, λ≥420 nm)下,在0.65 V下持续合成和积累高达123 mmol L - 1(≈0.4 wt. %)的H2O2,持续13小时,比以前最先进的聚噻吩(pTTh)光电阴极高20%。pS-DBT的改进归功于与pTTh相比,分解率降低了37%,而产量降低了20%。这项工作证明了通过抑制生产过程中由于进一步还原反应而导致的H2O2寄生损失来提高稳态H2O2浓度的关键途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Poly-4,7-Di-2-Thienyl-2,1,3-Benzothiadiazole Photocathode for Efficient Photoelectrochemical Hydrogen Peroxide Synthesis

Poly-4,7-Di-2-Thienyl-2,1,3-Benzothiadiazole Photocathode for Efficient Photoelectrochemical Hydrogen Peroxide Synthesis
Photocatalytic/photoelectrochemcial oxygen reduction reaction (ORR) in an aqueous solution offers a promising way for green hydrogen peroxide (H2O2) synthesis. Lots of photocatalysts/photoelectrocatalysts with high activity have been demonstrated up to now. However, the resulting H2O2 concentrations remain low (typically below 10 mmol L−1), posing a significant challenge for effective accumulation. Here, it is reported that poly-4,7-Di-2-thienyl-2,1,3-benzothiadiazole (denoted as pS-DBT) photocathode, an organic donor-acceptor-donor (D-A-D) based polymeric semiconductor with wide visible light response (bandgap ≈1.7 eV), generates 2e selectivity beyond 90% with moderate PEC ORR activity in alkaline solution. Impressively, it enables sustained synthesis and accumulation of H2O2 up to 123 mmol L−1 (≈0.4 wt. %) at 0.65 V versus RHE under simulated visible light (100 mW cm−2, λ ≥ 420 nm) for 13 h, which is 20% higher than the previously state-of-the-art polyterthiophene (pTTh) photocathode. This improvement for the pS-DBT is ascribed to a 37% lower decomposition rate regardless of a 20% lower production rate in comparison with those for the pTTh. This work demonstrates a key avenue to enhance steady-state H2O2 concentration by inhibiting parasitic loss of H2O2 due to further reduction reaction during the production process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信