精确可配置神经网络的对称n/p肖特基势垒调制

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Miao Zhang, Moufu Kong, Yi Cui, Hongfei Deng, Mingyang Wang, Zhikai Le, Yang Wang, Xinrui Chen, Haoxiang Tian, Kehan Wu, Xianfu Wang*, Ao Liu* and Yanrong Li, 
{"title":"精确可配置神经网络的对称n/p肖特基势垒调制","authors":"Miao Zhang,&nbsp;Moufu Kong,&nbsp;Yi Cui,&nbsp;Hongfei Deng,&nbsp;Mingyang Wang,&nbsp;Zhikai Le,&nbsp;Yang Wang,&nbsp;Xinrui Chen,&nbsp;Haoxiang Tian,&nbsp;Kehan Wu,&nbsp;Xianfu Wang*,&nbsp;Ao Liu* and Yanrong Li,&nbsp;","doi":"10.1021/acs.nanolett.5c01409","DOIUrl":null,"url":null,"abstract":"<p >Achieving both high precision and efficiency in edge devices presents a notable challenge in neuromorphic computing. Conventional neuristors typically operate with fixed computational precision, forcing a trade-off between accuracy and efficiency when addressing tasks of varying complexity. To overcome this limitation, we propose a Schottky barrier neuristor that combines high-efficiency nonlinear logic with high-precision linear operations within a single device. A distinctive global bottom gate modulates the Schottky barrier, maintaining a linear relationship between gate voltage and transconductance. Furthermore, electrostatic doping-induced image force effects, alongside an optimized source-drain work function, enable uniform and symmetric n-/p-type modulation, enhancing the driving capability. This innovative design supports the development of reconfigurable digital-analogue units, requiring only one-fifth the number of devices needed for nonlinear functions compared to silicon. Simulations demonstrate that an accelerator based on this device achieves 98.3% accuracy and an energy efficiency of 1359.62 TOPS/W.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 26","pages":"10328–10336"},"PeriodicalIF":9.1000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symmetric n/p Schottky Barrier Modulation for Precision-Configurable Neural Network\",\"authors\":\"Miao Zhang,&nbsp;Moufu Kong,&nbsp;Yi Cui,&nbsp;Hongfei Deng,&nbsp;Mingyang Wang,&nbsp;Zhikai Le,&nbsp;Yang Wang,&nbsp;Xinrui Chen,&nbsp;Haoxiang Tian,&nbsp;Kehan Wu,&nbsp;Xianfu Wang*,&nbsp;Ao Liu* and Yanrong Li,&nbsp;\",\"doi\":\"10.1021/acs.nanolett.5c01409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Achieving both high precision and efficiency in edge devices presents a notable challenge in neuromorphic computing. Conventional neuristors typically operate with fixed computational precision, forcing a trade-off between accuracy and efficiency when addressing tasks of varying complexity. To overcome this limitation, we propose a Schottky barrier neuristor that combines high-efficiency nonlinear logic with high-precision linear operations within a single device. A distinctive global bottom gate modulates the Schottky barrier, maintaining a linear relationship between gate voltage and transconductance. Furthermore, electrostatic doping-induced image force effects, alongside an optimized source-drain work function, enable uniform and symmetric n-/p-type modulation, enhancing the driving capability. This innovative design supports the development of reconfigurable digital-analogue units, requiring only one-fifth the number of devices needed for nonlinear functions compared to silicon. Simulations demonstrate that an accelerator based on this device achieves 98.3% accuracy and an energy efficiency of 1359.62 TOPS/W.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"25 26\",\"pages\":\"10328–10336\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c01409\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c01409","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在边缘设备中实现高精度和高效率是神经形态计算的一个显著挑战。传统的神经电阻器通常以固定的计算精度运行,在处理不同复杂性的任务时,必须在精度和效率之间进行权衡。为了克服这一限制,我们提出了一种肖特基势垒神经电阻器,它在单个器件内结合了高效率的非线性逻辑和高精度的线性运算。一个独特的全局底栅极调制肖特基势垒,保持栅极电压和跨导之间的线性关系。此外,静电掺杂引起的像力效应,加上优化的源漏功函数,使均匀对称的n /p型调制成为可能,增强了驱动能力。这种创新的设计支持可重构数字模拟单元的开发,与硅相比,非线性功能所需的设备数量仅为其数量的五分之一。仿真结果表明,基于该装置的加速器精度达到98.3%,能量效率达到1359.62 TOPS/W。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Symmetric n/p Schottky Barrier Modulation for Precision-Configurable Neural Network

Symmetric n/p Schottky Barrier Modulation for Precision-Configurable Neural Network

Symmetric n/p Schottky Barrier Modulation for Precision-Configurable Neural Network

Achieving both high precision and efficiency in edge devices presents a notable challenge in neuromorphic computing. Conventional neuristors typically operate with fixed computational precision, forcing a trade-off between accuracy and efficiency when addressing tasks of varying complexity. To overcome this limitation, we propose a Schottky barrier neuristor that combines high-efficiency nonlinear logic with high-precision linear operations within a single device. A distinctive global bottom gate modulates the Schottky barrier, maintaining a linear relationship between gate voltage and transconductance. Furthermore, electrostatic doping-induced image force effects, alongside an optimized source-drain work function, enable uniform and symmetric n-/p-type modulation, enhancing the driving capability. This innovative design supports the development of reconfigurable digital-analogue units, requiring only one-fifth the number of devices needed for nonlinear functions compared to silicon. Simulations demonstrate that an accelerator based on this device achieves 98.3% accuracy and an energy efficiency of 1359.62 TOPS/W.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信