Wenlu Li, Paul George, Matine M. Azadian, MingMing Ning, Amar Dhand, Steven C. Cramer, S. Thomas Carmichael, Eng H. Lo
{"title":"改变基因、细胞和网络,在中风后重新编程大脑","authors":"Wenlu Li, Paul George, Matine M. Azadian, MingMing Ning, Amar Dhand, Steven C. Cramer, S. Thomas Carmichael, Eng H. Lo","doi":"10.1038/s41593-025-01981-8","DOIUrl":null,"url":null,"abstract":"<p>Important advances have been made in reperfusion therapies for acute ischemic stroke. However, a majority of patients are either ineligible for or do not respond to treatments and continue to have considerable functional deficits. Stroke results in a pathological disruption of the neurovascular unit (NVU) that involves blood–brain barrier leakage, glial activation, neuronal damage and chronic inflammation, all of which create a microenvironment that hinders recovery. Therefore, finding ways to promote central nervous system recovery remains the holy grail of stroke research. Here we propose a conceptual framework to synthesize recent progress in the field, which is currently dispersed and disconnected in the literature. We suggest that stroke recovery requires an integrated reprogramming process throughout the brain that occurs at multiple levels, including changes in gene expression, endogenous cellular transdifferentiation within the NVU, and reorganization of larger-scale neural and social networks.</p>","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":"4 1","pages":""},"PeriodicalIF":20.0000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Changing genes, cells and networks to reprogram the brain after stroke\",\"authors\":\"Wenlu Li, Paul George, Matine M. Azadian, MingMing Ning, Amar Dhand, Steven C. Cramer, S. Thomas Carmichael, Eng H. Lo\",\"doi\":\"10.1038/s41593-025-01981-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Important advances have been made in reperfusion therapies for acute ischemic stroke. However, a majority of patients are either ineligible for or do not respond to treatments and continue to have considerable functional deficits. Stroke results in a pathological disruption of the neurovascular unit (NVU) that involves blood–brain barrier leakage, glial activation, neuronal damage and chronic inflammation, all of which create a microenvironment that hinders recovery. Therefore, finding ways to promote central nervous system recovery remains the holy grail of stroke research. Here we propose a conceptual framework to synthesize recent progress in the field, which is currently dispersed and disconnected in the literature. We suggest that stroke recovery requires an integrated reprogramming process throughout the brain that occurs at multiple levels, including changes in gene expression, endogenous cellular transdifferentiation within the NVU, and reorganization of larger-scale neural and social networks.</p>\",\"PeriodicalId\":19076,\"journal\":{\"name\":\"Nature neuroscience\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":20.0000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41593-025-01981-8\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41593-025-01981-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Changing genes, cells and networks to reprogram the brain after stroke
Important advances have been made in reperfusion therapies for acute ischemic stroke. However, a majority of patients are either ineligible for or do not respond to treatments and continue to have considerable functional deficits. Stroke results in a pathological disruption of the neurovascular unit (NVU) that involves blood–brain barrier leakage, glial activation, neuronal damage and chronic inflammation, all of which create a microenvironment that hinders recovery. Therefore, finding ways to promote central nervous system recovery remains the holy grail of stroke research. Here we propose a conceptual framework to synthesize recent progress in the field, which is currently dispersed and disconnected in the literature. We suggest that stroke recovery requires an integrated reprogramming process throughout the brain that occurs at multiple levels, including changes in gene expression, endogenous cellular transdifferentiation within the NVU, and reorganization of larger-scale neural and social networks.
期刊介绍:
Nature Neuroscience, a multidisciplinary journal, publishes papers of the utmost quality and significance across all realms of neuroscience. The editors welcome contributions spanning molecular, cellular, systems, and cognitive neuroscience, along with psychophysics, computational modeling, and nervous system disorders. While no area is off-limits, studies offering fundamental insights into nervous system function receive priority.
The journal offers high visibility to both readers and authors, fostering interdisciplinary communication and accessibility to a broad audience. It maintains high standards of copy editing and production, rigorous peer review, rapid publication, and operates independently from academic societies and other vested interests.
In addition to primary research, Nature Neuroscience features news and views, reviews, editorials, commentaries, perspectives, book reviews, and correspondence, aiming to serve as the voice of the global neuroscience community.