镍催化的甲烷持久化学环干重整铁铈同步氧化还原反应

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Minjung Kim, Michael Tomechko and Shang Zhai
{"title":"镍催化的甲烷持久化学环干重整铁铈同步氧化还原反应","authors":"Minjung Kim, Michael Tomechko and Shang Zhai","doi":"10.1039/D5TA01774B","DOIUrl":null,"url":null,"abstract":"<p >This study investigates the synergistic interaction among elements in nickel–(iron and cerium oxide) for chemical looping dry reforming of methane (CLDRM) at 700 °C to 900 °C. Nickel catalyzes methane conversion to enable simultaneous reduction of iron and cerium. We quantified methane conversion by two co-existing mechanisms: partial oxidation to syngas and pyrolysis to solid carbon and H<small><sub>2</sub></small>. In the CO<small><sub>2</sub></small> step, the bulk interaction between Fe and Ce forms cerium orthoferrite (CeFeO<small><sub>3</sub></small>) that enhances methane conversion, despite the anomalously reduced Ce<small><sup>3+</sup></small> in the oxidation product, CeFeO<small><sub>3</sub></small>. An optimal nickel loading enhances methane conversion and CeFeO<small><sub>3</sub></small> formation while limiting solid carbon accumulation, and it decreases with increasing CLDRM temperature, because high temperature also facilitates the reactions. The optimal nickel loading in Ni<small><sub>0.34</sub></small>–(Fe<small><sub>0.67</sub></small>Ce<small><sub>0.50</sub></small>O<small><sub><em>x</em></sub></small>)-900 maintained 76% conversion rates for methane and CO<small><sub>2</sub></small> over 100 CLDRM cycles at 900 °C, with only 0.26% of the carbon in methane accumulated as solid carbon across the cycles. Highly adjustable syngas ratio is achieved, because methane step generates mostly H<small><sub>2</sub></small> while CO is mostly from CO<small><sub>2</sub></small> step. Our findings illustrate the mechanisms of the nickel–(iron and cerium oxide) materials for efficient and durable CLDRM, offering valuable insights about mixed catalyst and oxygen carrier material design.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 26","pages":" 20942-20954"},"PeriodicalIF":9.5000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ta/d5ta01774b?page=search","citationCount":"0","resultStr":"{\"title\":\"Nickel-catalyzed simultaneous iron and cerium redox reactions for durable chemical looping dry reforming of methane†\",\"authors\":\"Minjung Kim, Michael Tomechko and Shang Zhai\",\"doi\":\"10.1039/D5TA01774B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This study investigates the synergistic interaction among elements in nickel–(iron and cerium oxide) for chemical looping dry reforming of methane (CLDRM) at 700 °C to 900 °C. Nickel catalyzes methane conversion to enable simultaneous reduction of iron and cerium. We quantified methane conversion by two co-existing mechanisms: partial oxidation to syngas and pyrolysis to solid carbon and H<small><sub>2</sub></small>. In the CO<small><sub>2</sub></small> step, the bulk interaction between Fe and Ce forms cerium orthoferrite (CeFeO<small><sub>3</sub></small>) that enhances methane conversion, despite the anomalously reduced Ce<small><sup>3+</sup></small> in the oxidation product, CeFeO<small><sub>3</sub></small>. An optimal nickel loading enhances methane conversion and CeFeO<small><sub>3</sub></small> formation while limiting solid carbon accumulation, and it decreases with increasing CLDRM temperature, because high temperature also facilitates the reactions. The optimal nickel loading in Ni<small><sub>0.34</sub></small>–(Fe<small><sub>0.67</sub></small>Ce<small><sub>0.50</sub></small>O<small><sub><em>x</em></sub></small>)-900 maintained 76% conversion rates for methane and CO<small><sub>2</sub></small> over 100 CLDRM cycles at 900 °C, with only 0.26% of the carbon in methane accumulated as solid carbon across the cycles. Highly adjustable syngas ratio is achieved, because methane step generates mostly H<small><sub>2</sub></small> while CO is mostly from CO<small><sub>2</sub></small> step. Our findings illustrate the mechanisms of the nickel–(iron and cerium oxide) materials for efficient and durable CLDRM, offering valuable insights about mixed catalyst and oxygen carrier material design.</p>\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":\" 26\",\"pages\":\" 20942-20954\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ta/d5ta01774b?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d5ta01774b\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d5ta01774b","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了在700 ~ 900℃条件下,镍-(铁和氧化铈)中元素之间的协同作用对甲烷(CLDRM)化学环干重整(CLDRM)的影响。镍催化甲烷转化,使铁和铈同时还原。我们量化了两种共存的甲烷转化机制:部分氧化制合成气和热解制固体碳和H2。在CO2步骤中,尽管氧化产物CeFeO3中Ce3+的含量异常降低,但Fe和Ce之间的体相互作用形成了CeFeO3,促进了甲烷的转化。最佳的镍负载可以促进甲烷转化和CeFeO3的形成,同时限制固体碳的积累,并且随着CLDRM温度的升高而降低,因为高温也有利于反应。在900℃下,Ni0.34-(Fe0.67Ce0.50Ox)-900的最佳镍负载在100个CLDRM循环中保持了76%的甲烷和二氧化碳转化率,甲烷中只有0.26%的碳在整个循环中以固体碳的形式积累。我们的研究结果阐明了镍(铁和氧化铈)材料高效耐用CLDRM的机理,为混合催化剂和载氧材料的设计提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nickel-catalyzed simultaneous iron and cerium redox reactions for durable chemical looping dry reforming of methane†

Nickel-catalyzed simultaneous iron and cerium redox reactions for durable chemical looping dry reforming of methane†

This study investigates the synergistic interaction among elements in nickel–(iron and cerium oxide) for chemical looping dry reforming of methane (CLDRM) at 700 °C to 900 °C. Nickel catalyzes methane conversion to enable simultaneous reduction of iron and cerium. We quantified methane conversion by two co-existing mechanisms: partial oxidation to syngas and pyrolysis to solid carbon and H2. In the CO2 step, the bulk interaction between Fe and Ce forms cerium orthoferrite (CeFeO3) that enhances methane conversion, despite the anomalously reduced Ce3+ in the oxidation product, CeFeO3. An optimal nickel loading enhances methane conversion and CeFeO3 formation while limiting solid carbon accumulation, and it decreases with increasing CLDRM temperature, because high temperature also facilitates the reactions. The optimal nickel loading in Ni0.34–(Fe0.67Ce0.50Ox)-900 maintained 76% conversion rates for methane and CO2 over 100 CLDRM cycles at 900 °C, with only 0.26% of the carbon in methane accumulated as solid carbon across the cycles. Highly adjustable syngas ratio is achieved, because methane step generates mostly H2 while CO is mostly from CO2 step. Our findings illustrate the mechanisms of the nickel–(iron and cerium oxide) materials for efficient and durable CLDRM, offering valuable insights about mixed catalyst and oxygen carrier material design.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信