设计Ru纳米颗粒尺寸和金属-载体相互作用以增强催化氢燃烧

IF 9.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Zohreh Akbari, Mohammad Reza Alizadeh Kiapi, Thi Ha My Pham, Loris Lombardo, David Fairen-Jimenez and Andreas Zuttel
{"title":"设计Ru纳米颗粒尺寸和金属-载体相互作用以增强催化氢燃烧","authors":"Zohreh Akbari, Mohammad Reza Alizadeh Kiapi, Thi Ha My Pham, Loris Lombardo, David Fairen-Jimenez and Andreas Zuttel","doi":"10.1039/D5TA03057A","DOIUrl":null,"url":null,"abstract":"<p >Catalytic hydrogen combustion (CHC) plays a crucial role in enhancing the safety and efficiency of fuel cells and electrolysers, thereby promoting the H<small><sub>2</sub></small> economy. To increase the catalytic activity of supported metal particles for CHC, the active surface area can be increased through Ru fine dispersion, and intrinsic activity can be enhanced by optimising metal–support interactions (MSIs). In this study, we report the synthesis and CHC performance of highly dispersed Ru sub-nanoparticles on a γAl<small><sub>2</sub></small>O<small><sub>3</sub></small> support with various Ru loadings. A clear correlation between Ru loading and CHC mass activity was identified. The highest mass activity is achieved at 1 wt% Ru, with a yield of 5.7 mmol<small><sub>H<small><sub>2</sub></small></sub></small> mol<small><sup>−1</sup></small><small><sub>Ru</sub></small> s<small><sup>−1</sup></small> at 80 °C. Lower Ru loadings lead to a strong MSI and subsequently to a lower Ru<small><sup>0</sup></small>/Ru–O ratio. Further, higher Ru loadings decrease metal dispersion, reducing CHC activity. <em>Operando</em> diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and density functional theory (DFT) calculations confirmed the role of OH groups as key intermediates in the CHC mechanism over the Ru-γAl<small><sub>2</sub></small>O<small><sub>3</sub></small> catalyst. Our findings highlight the impact of Ru nanoparticle size engineering on CHC mass activity and provide mechanistic insights and design principles for the development of highly active Ru catalysts, showing a way forward to achieve safer, integrated and efficient CHC utilisation.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 26","pages":" 20372-20382"},"PeriodicalIF":9.5000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ta/d5ta03057a?page=search","citationCount":"0","resultStr":"{\"title\":\"Engineering Ru nanoparticle size and metal–support interactions for enhanced catalytic hydrogen combustion†\",\"authors\":\"Zohreh Akbari, Mohammad Reza Alizadeh Kiapi, Thi Ha My Pham, Loris Lombardo, David Fairen-Jimenez and Andreas Zuttel\",\"doi\":\"10.1039/D5TA03057A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Catalytic hydrogen combustion (CHC) plays a crucial role in enhancing the safety and efficiency of fuel cells and electrolysers, thereby promoting the H<small><sub>2</sub></small> economy. To increase the catalytic activity of supported metal particles for CHC, the active surface area can be increased through Ru fine dispersion, and intrinsic activity can be enhanced by optimising metal–support interactions (MSIs). In this study, we report the synthesis and CHC performance of highly dispersed Ru sub-nanoparticles on a γAl<small><sub>2</sub></small>O<small><sub>3</sub></small> support with various Ru loadings. A clear correlation between Ru loading and CHC mass activity was identified. The highest mass activity is achieved at 1 wt% Ru, with a yield of 5.7 mmol<small><sub>H<small><sub>2</sub></small></sub></small> mol<small><sup>−1</sup></small><small><sub>Ru</sub></small> s<small><sup>−1</sup></small> at 80 °C. Lower Ru loadings lead to a strong MSI and subsequently to a lower Ru<small><sup>0</sup></small>/Ru–O ratio. Further, higher Ru loadings decrease metal dispersion, reducing CHC activity. <em>Operando</em> diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and density functional theory (DFT) calculations confirmed the role of OH groups as key intermediates in the CHC mechanism over the Ru-γAl<small><sub>2</sub></small>O<small><sub>3</sub></small> catalyst. Our findings highlight the impact of Ru nanoparticle size engineering on CHC mass activity and provide mechanistic insights and design principles for the development of highly active Ru catalysts, showing a way forward to achieve safer, integrated and efficient CHC utilisation.</p>\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":\" 26\",\"pages\":\" 20372-20382\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ta/d5ta03057a?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d5ta03057a\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d5ta03057a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

催化氢燃烧(CHC)在提高燃料电池和电解槽的安全性和效率,从而促进H2经济性方面发挥着至关重要的作用。为了提高负载金属颗粒对CHC的催化活性,可以通过Ru精细分散来增加活性表面积,并通过优化金属-负载相互作用(msi)来提高固有活性。在这项研究中,我们报道了在不同Ru负载的γ - al2o3载体上高度分散的Ru亚纳米颗粒的合成和CHC性能。Ru负荷与CHC质量活性之间存在明显的相关性。在1 wt% Ru时达到最高的质量活性,产率为5.7 mmolH2.molRu-1。s-1在80℃。较低的Ru负荷导致较强的MSI,随后导致较低的Ru0/Ru- o比率。此外,较高的Ru负荷降低了金属分散,降低了CHC活性。漫反射红外傅里叶变换光谱(DRIFTS)和密度泛函理论(DFT)计算证实了OH基团作为关键中间体在Ru-γAl2O3催化剂上的CHC机制中的作用。我们的研究结果强调了Ru纳米颗粒尺寸工程对CHC质量活性的影响,并为开发高活性Ru催化剂提供了机理见解和设计原则,为实现更安全、集成和高效的CHC利用指明了前进的道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Engineering Ru nanoparticle size and metal–support interactions for enhanced catalytic hydrogen combustion†

Engineering Ru nanoparticle size and metal–support interactions for enhanced catalytic hydrogen combustion†

Catalytic hydrogen combustion (CHC) plays a crucial role in enhancing the safety and efficiency of fuel cells and electrolysers, thereby promoting the H2 economy. To increase the catalytic activity of supported metal particles for CHC, the active surface area can be increased through Ru fine dispersion, and intrinsic activity can be enhanced by optimising metal–support interactions (MSIs). In this study, we report the synthesis and CHC performance of highly dispersed Ru sub-nanoparticles on a γAl2O3 support with various Ru loadings. A clear correlation between Ru loading and CHC mass activity was identified. The highest mass activity is achieved at 1 wt% Ru, with a yield of 5.7 mmolH2 mol−1Ru s−1 at 80 °C. Lower Ru loadings lead to a strong MSI and subsequently to a lower Ru0/Ru–O ratio. Further, higher Ru loadings decrease metal dispersion, reducing CHC activity. Operando diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and density functional theory (DFT) calculations confirmed the role of OH groups as key intermediates in the CHC mechanism over the Ru-γAl2O3 catalyst. Our findings highlight the impact of Ru nanoparticle size engineering on CHC mass activity and provide mechanistic insights and design principles for the development of highly active Ru catalysts, showing a way forward to achieve safer, integrated and efficient CHC utilisation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信