“利用双光子吸收二亚胺基配体敏化剂调节铜(I)配合物的协同能量转移”的机制见解

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Julian A. Moghtader, Dr. Maria-Sophie Bertrams, Dr. Dieter Schollmeyer, Prof. Dr. Christoph Kerzig
{"title":"“利用双光子吸收二亚胺基配体敏化剂调节铜(I)配合物的协同能量转移”的机制见解","authors":"Julian A. Moghtader,&nbsp;Dr. Maria-Sophie Bertrams,&nbsp;Dr. Dieter Schollmeyer,&nbsp;Prof. Dr. Christoph Kerzig","doi":"10.1002/anie.202509203","DOIUrl":null,"url":null,"abstract":"<p>In a recent communication, Collins and coworkers presented a Cu(I) complex with photocatalytic activity under red light LED conditions, mainly for singlet oxygen-driven reactions. Guided by steady-state emission measurements with 800 nm excitation, the authors suggested that the underlying mechanism for the generation of the photoexcited key species is a simultaneous two-photon absorption via a virtual state. However, such a mechanism requires pulsed laser excitation and cannot compete when a conventional one-photon excitation is also feasible with the selected excitation wavelength range. Using several spectroscopic techniques and reactivity assays under different light color and intensity conditions, we unambiguously demonstrate that a conventional one-photon excitation followed by rather inefficient singlet oxygen generation (quantum yield &lt;5%) is responsible for the observed photoreactivity of the Cu(I) complex. In addition, we briefly summarize general mechanistic considerations, estimate typical photon densities required for a variety of two-photon mechanisms, highlight the importance of optical filters and impurities to avoid artifacts in the emission spectra, and present some guidelines for the differentiation between one- and two-photon mechanisms.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 26","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanistic Insights: Correspondence on “Tuning Co-Operative Energy Transfer in Copper(I) Complexes Using Two-Photon Absorbing Diimine-Based Ligand Sensitizers”\",\"authors\":\"Julian A. Moghtader,&nbsp;Dr. Maria-Sophie Bertrams,&nbsp;Dr. Dieter Schollmeyer,&nbsp;Prof. Dr. Christoph Kerzig\",\"doi\":\"10.1002/anie.202509203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In a recent communication, Collins and coworkers presented a Cu(I) complex with photocatalytic activity under red light LED conditions, mainly for singlet oxygen-driven reactions. Guided by steady-state emission measurements with 800 nm excitation, the authors suggested that the underlying mechanism for the generation of the photoexcited key species is a simultaneous two-photon absorption via a virtual state. However, such a mechanism requires pulsed laser excitation and cannot compete when a conventional one-photon excitation is also feasible with the selected excitation wavelength range. Using several spectroscopic techniques and reactivity assays under different light color and intensity conditions, we unambiguously demonstrate that a conventional one-photon excitation followed by rather inefficient singlet oxygen generation (quantum yield &lt;5%) is responsible for the observed photoreactivity of the Cu(I) complex. In addition, we briefly summarize general mechanistic considerations, estimate typical photon densities required for a variety of two-photon mechanisms, highlight the importance of optical filters and impurities to avoid artifacts in the emission spectra, and present some guidelines for the differentiation between one- and two-photon mechanisms.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"64 26\",\"pages\":\"\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202509203\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202509203","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

一个光子还是两个光子,这是个问题。对最近提出的光敏剂[Cu(bathocupSANI)2]BF4的进一步研究表明,每次催化周转的单个红色/近红外光子足以进行光氧化反应。确定了光催化的机制挑战、缺陷和未来研究的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Mechanistic Insights: Correspondence on “Tuning Co-Operative Energy Transfer in Copper(I) Complexes Using Two-Photon Absorbing Diimine-Based Ligand Sensitizers”

Mechanistic Insights: Correspondence on “Tuning Co-Operative Energy Transfer in Copper(I) Complexes Using Two-Photon Absorbing Diimine-Based Ligand Sensitizers”

Mechanistic Insights: Correspondence on “Tuning Co-Operative Energy Transfer in Copper(I) Complexes Using Two-Photon Absorbing Diimine-Based Ligand Sensitizers”

In a recent communication, Collins and coworkers presented a Cu(I) complex with photocatalytic activity under red light LED conditions, mainly for singlet oxygen-driven reactions. Guided by steady-state emission measurements with 800 nm excitation, the authors suggested that the underlying mechanism for the generation of the photoexcited key species is a simultaneous two-photon absorption via a virtual state. However, such a mechanism requires pulsed laser excitation and cannot compete when a conventional one-photon excitation is also feasible with the selected excitation wavelength range. Using several spectroscopic techniques and reactivity assays under different light color and intensity conditions, we unambiguously demonstrate that a conventional one-photon excitation followed by rather inefficient singlet oxygen generation (quantum yield <5%) is responsible for the observed photoreactivity of the Cu(I) complex. In addition, we briefly summarize general mechanistic considerations, estimate typical photon densities required for a variety of two-photon mechanisms, highlight the importance of optical filters and impurities to avoid artifacts in the emission spectra, and present some guidelines for the differentiation between one- and two-photon mechanisms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信