国际基础和临床药理学联合会。CXX。γ-羟基丁酸蛋白在哺乳动物大脑中的靶标-超越经典受体。

IF 19.3 1区 医学 Q1 PHARMACOLOGY & PHARMACY
Petrine Wellendorph, Stine Juul Gauger, Jens Velde Andersen, Birgitte Rahbek Kornum, Sara M O Solbak, Bente Frølund
{"title":"国际基础和临床药理学联合会。CXX。γ-羟基丁酸蛋白在哺乳动物大脑中的靶标-超越经典受体。","authors":"Petrine Wellendorph, Stine Juul Gauger, Jens Velde Andersen, Birgitte Rahbek Kornum, Sara M O Solbak, Bente Frølund","doi":"10.1016/j.pharmr.2025.100064","DOIUrl":null,"url":null,"abstract":"<p><p>γ-Hydroxybutyrate (GHB) is a multifaceted compound with an intriguing, yet undeciphered, pharmacology in the mammalian brain. As a metabolite of GABA it is tightly regulated in terms of synthesis and degradation, and is found in micromolar concentrations in the brain. When GHB is taken in high pharmacological doses, it causes euphoria, relaxation, hypothermia, and sedation, and regulates sleep. Through careful pharmacological and genetic studies, this profile has been convincingly matched to the metabotropic GABA<sub>B</sub> receptor where GHB is a weak agonist. These effects explain the illicit substance use of GHB, but also its clinically useful effects as a drug in alcoholism and narcolepsy. Additionally, GHB binds with high affinity to a discrete binding site with high expression in the forebrain, and with very well defined anatomical, biochemical, and pharmacological characteristics. Despite this clear profile, the molecular identity of this binding protein or alleged \"GHB receptor\" has remained uncertain. However, recently, prompted by the development of GHB analogs with low nanomolar affinity and selectivity for the high-affinity site, the target was revealed to be the Ca<sup>2+</sup>/calmodulin (CaM)-dependent protein kinase II alpha subunit-a highly important brain kinase, mediating both physiological processes in synaptic plasticity, and detrimental Ca<sup>2+</sup> signaling and cell death in cases of brain ischemia. The discovery of calmodulin-dependent protein kinase II alpha subunit as the high-affinity brain target for GHB represents a major leap forward in our understanding of GHB neurobiology, and dictates new times for GHB research, suggesting a potential role for GHB and GHB analogs as integrators of inhibitory and excitatory brain signaling. SIGNIFICANCE STATEMENT: γ-Hydroxybutyrate is a molecule with a multitude of actions in the mammalian brain, and with a rather complex molecular pharmacology. A low affinity at GABA<sub>B</sub> receptors, located mainly at inhibitory synapses, and a high affinity at the Ca2+/CaM-dependent protein kinase II alpha subunit, located at excitatory synapses, makes GHB pharmacology especially intriguing.</p>","PeriodicalId":19780,"journal":{"name":"Pharmacological Reviews","volume":"77 4","pages":"100064"},"PeriodicalIF":19.3000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"International Union of Basic and Clinical Pharmacology. CXX. γ-Hydroxybutyrate protein targets in the mammalian brain-beyond classic receptors.\",\"authors\":\"Petrine Wellendorph, Stine Juul Gauger, Jens Velde Andersen, Birgitte Rahbek Kornum, Sara M O Solbak, Bente Frølund\",\"doi\":\"10.1016/j.pharmr.2025.100064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>γ-Hydroxybutyrate (GHB) is a multifaceted compound with an intriguing, yet undeciphered, pharmacology in the mammalian brain. As a metabolite of GABA it is tightly regulated in terms of synthesis and degradation, and is found in micromolar concentrations in the brain. When GHB is taken in high pharmacological doses, it causes euphoria, relaxation, hypothermia, and sedation, and regulates sleep. Through careful pharmacological and genetic studies, this profile has been convincingly matched to the metabotropic GABA<sub>B</sub> receptor where GHB is a weak agonist. These effects explain the illicit substance use of GHB, but also its clinically useful effects as a drug in alcoholism and narcolepsy. Additionally, GHB binds with high affinity to a discrete binding site with high expression in the forebrain, and with very well defined anatomical, biochemical, and pharmacological characteristics. Despite this clear profile, the molecular identity of this binding protein or alleged \\\"GHB receptor\\\" has remained uncertain. However, recently, prompted by the development of GHB analogs with low nanomolar affinity and selectivity for the high-affinity site, the target was revealed to be the Ca<sup>2+</sup>/calmodulin (CaM)-dependent protein kinase II alpha subunit-a highly important brain kinase, mediating both physiological processes in synaptic plasticity, and detrimental Ca<sup>2+</sup> signaling and cell death in cases of brain ischemia. The discovery of calmodulin-dependent protein kinase II alpha subunit as the high-affinity brain target for GHB represents a major leap forward in our understanding of GHB neurobiology, and dictates new times for GHB research, suggesting a potential role for GHB and GHB analogs as integrators of inhibitory and excitatory brain signaling. SIGNIFICANCE STATEMENT: γ-Hydroxybutyrate is a molecule with a multitude of actions in the mammalian brain, and with a rather complex molecular pharmacology. A low affinity at GABA<sub>B</sub> receptors, located mainly at inhibitory synapses, and a high affinity at the Ca2+/CaM-dependent protein kinase II alpha subunit, located at excitatory synapses, makes GHB pharmacology especially intriguing.</p>\",\"PeriodicalId\":19780,\"journal\":{\"name\":\"Pharmacological Reviews\",\"volume\":\"77 4\",\"pages\":\"100064\"},\"PeriodicalIF\":19.3000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmacological Reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.pharmr.2025.100064\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacological Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.pharmr.2025.100064","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

γ-羟基丁酸酯(GHB)是一种多面化合物,在哺乳动物大脑中具有有趣但尚未破译的药理学。作为GABA的代谢物,它在合成和降解方面受到严格调节,在大脑中以微摩尔浓度存在。当服用高剂量的GHB时,它会引起欣快感、放松、体温过低和镇静,并调节睡眠。通过仔细的药理学和遗传学研究,这一特征已经令人信服地与代谢性GABAB受体相匹配,其中GHB是一种弱激动剂。这些效应解释了GHB的非法使用,但也解释了它作为酒精中毒和嗜睡症药物的临床有用作用。此外,GHB以高亲和力结合前脑高表达的离散结合位点,并具有非常明确的解剖、生化和药理学特征。尽管有这种清晰的轮廓,这种结合蛋白或所谓的“GHB受体”的分子身份仍然不确定。然而,最近,随着低纳摩尔亲和力和高亲和力位点选择性的GHB类似物的发展,靶点被揭示为Ca2+/钙调蛋白(CaM)依赖性蛋白激酶II α亚基-一种非常重要的脑激酶,介导突触可塑性的生理过程,以及脑缺血时有害的Ca2+信号传导和细胞死亡。钙调素依赖性蛋白激酶II α亚基作为GHB的高亲和力脑靶标的发现代表了我们对GHB神经生物学理解的重大飞跃,并预示着GHB研究的新时代,表明GHB和GHB类似物作为抑制性和兴奋性脑信号整合体的潜在作用。意义声明:γ-羟基丁酸酯是一种在哺乳动物大脑中具有多种作用的分子,具有相当复杂的分子药理学。GHB对GABAB受体的亲和力较低,主要位于抑制性突触,而对Ca2+/ cam依赖性蛋白激酶II α亚基的亲和力较高,位于兴奋性突触,这使得GHB的药理学特别有趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
International Union of Basic and Clinical Pharmacology. CXX. γ-Hydroxybutyrate protein targets in the mammalian brain-beyond classic receptors.

γ-Hydroxybutyrate (GHB) is a multifaceted compound with an intriguing, yet undeciphered, pharmacology in the mammalian brain. As a metabolite of GABA it is tightly regulated in terms of synthesis and degradation, and is found in micromolar concentrations in the brain. When GHB is taken in high pharmacological doses, it causes euphoria, relaxation, hypothermia, and sedation, and regulates sleep. Through careful pharmacological and genetic studies, this profile has been convincingly matched to the metabotropic GABAB receptor where GHB is a weak agonist. These effects explain the illicit substance use of GHB, but also its clinically useful effects as a drug in alcoholism and narcolepsy. Additionally, GHB binds with high affinity to a discrete binding site with high expression in the forebrain, and with very well defined anatomical, biochemical, and pharmacological characteristics. Despite this clear profile, the molecular identity of this binding protein or alleged "GHB receptor" has remained uncertain. However, recently, prompted by the development of GHB analogs with low nanomolar affinity and selectivity for the high-affinity site, the target was revealed to be the Ca2+/calmodulin (CaM)-dependent protein kinase II alpha subunit-a highly important brain kinase, mediating both physiological processes in synaptic plasticity, and detrimental Ca2+ signaling and cell death in cases of brain ischemia. The discovery of calmodulin-dependent protein kinase II alpha subunit as the high-affinity brain target for GHB represents a major leap forward in our understanding of GHB neurobiology, and dictates new times for GHB research, suggesting a potential role for GHB and GHB analogs as integrators of inhibitory and excitatory brain signaling. SIGNIFICANCE STATEMENT: γ-Hydroxybutyrate is a molecule with a multitude of actions in the mammalian brain, and with a rather complex molecular pharmacology. A low affinity at GABAB receptors, located mainly at inhibitory synapses, and a high affinity at the Ca2+/CaM-dependent protein kinase II alpha subunit, located at excitatory synapses, makes GHB pharmacology especially intriguing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pharmacological Reviews
Pharmacological Reviews 医学-药学
CiteScore
34.70
自引率
0.50%
发文量
40
期刊介绍: Pharmacological Reviews is a highly popular and well-received journal that has a long and rich history of success. It was first published in 1949 and is currently published bimonthly online by the American Society for Pharmacology and Experimental Therapeutics. The journal is indexed or abstracted by various databases, including Biological Abstracts, BIOSIS Previews Database, Biosciences Information Service, Current Contents/Life Sciences, EMBASE/Excerpta Medica, Index Medicus, Index to Scientific Reviews, Medical Documentation Service, Reference Update, Research Alerts, Science Citation Index, and SciSearch. Pharmacological Reviews offers comprehensive reviews of new pharmacological fields and is able to stay up-to-date with published content. Overall, it is highly regarded by scholars.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信