超临界流体色谱法纤维素三(3,5-二甲基苯基氨基甲酸酯)手性柱分离多卤化4,4′-联吡啶对映体研究

IF 3 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
ELECTROPHORESIS Pub Date : 2025-05-31 DOI:10.1002/elps.8156
Emmanuelle Lipka, Roberto Dallocchio, Barbara Sechi, Mikheil Rukhaia, Giorgi Jibuti, Bezhan Chankvetadze, Victor Mamane, Paola Peluso
{"title":"超临界流体色谱法纤维素三(3,5-二甲基苯基氨基甲酸酯)手性柱分离多卤化4,4′-联吡啶对映体研究","authors":"Emmanuelle Lipka, Roberto Dallocchio, Barbara Sechi, Mikheil Rukhaia, Giorgi Jibuti, Bezhan Chankvetadze, Victor Mamane, Paola Peluso","doi":"10.1002/elps.8156","DOIUrl":null,"url":null,"abstract":"<p><p>In the last decade, by integrating experimental and computational analyses, it was demonstrated that halogen bond (HaB) may contribute to binding and enantiorecognition mechanisms underlying the HPLC enantioseparation of halogenated chiral analytes by using cellulose tris(3,5-dimethylphenylcarbamate) (CDMPC)-based chiral columns and n-hexane-based mixtures as mobile phases. When used as a pivotal component of the mobile phase in supercritical fluid chromatography (SFC), carbon dioxide is often considered as an n-hexane-like nonpolar solvent because of its low dielectric constant and zero molecular dipole moment. On the other hand, carbon dioxide may also serve as hydrogen bond (HB) and HaB acceptor due to the presence of nonbonding electrons on the two oxygen atoms, interacting with analyte enantiomers, chiral selectors, and co-solvents. On this basis, we report herein the results of a study aiming at evaluating the impact of using carbon dioxide in SFC in place of n-hexane in HPLC on halogen-dependent enantioseparations by using atropisomeric halogenated 4,4'-bipyridines as analytes and Lux Cellulose-1 as CDMPC-based chiral column. The experimental investigation was complemented by a computational study performed using (a) quantum mechanics (QM) calculations to map and quantify noncovalent interactions possibly underlying the contact of the analytes with carbon dioxide and with the distinctive pendant groups of the CDMPC and (b) molecular dynamics (MD) simulations to visualize noncovalent interactions acting in the analyte 1/CDMPC chromatographic system in different media. The use of MD simulations to model enantioseparations performed in carbon dioxide-based media was not reported in the literature so far.</p>","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insights Into the Enantioseparation of Polyhalogenated 4,4'-Bipyridines With a Cellulose Tris(3,5-Dimethylphenylcarbamate)-Based Chiral Column by Using Supercritical Fluid Chromatography.\",\"authors\":\"Emmanuelle Lipka, Roberto Dallocchio, Barbara Sechi, Mikheil Rukhaia, Giorgi Jibuti, Bezhan Chankvetadze, Victor Mamane, Paola Peluso\",\"doi\":\"10.1002/elps.8156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the last decade, by integrating experimental and computational analyses, it was demonstrated that halogen bond (HaB) may contribute to binding and enantiorecognition mechanisms underlying the HPLC enantioseparation of halogenated chiral analytes by using cellulose tris(3,5-dimethylphenylcarbamate) (CDMPC)-based chiral columns and n-hexane-based mixtures as mobile phases. When used as a pivotal component of the mobile phase in supercritical fluid chromatography (SFC), carbon dioxide is often considered as an n-hexane-like nonpolar solvent because of its low dielectric constant and zero molecular dipole moment. On the other hand, carbon dioxide may also serve as hydrogen bond (HB) and HaB acceptor due to the presence of nonbonding electrons on the two oxygen atoms, interacting with analyte enantiomers, chiral selectors, and co-solvents. On this basis, we report herein the results of a study aiming at evaluating the impact of using carbon dioxide in SFC in place of n-hexane in HPLC on halogen-dependent enantioseparations by using atropisomeric halogenated 4,4'-bipyridines as analytes and Lux Cellulose-1 as CDMPC-based chiral column. The experimental investigation was complemented by a computational study performed using (a) quantum mechanics (QM) calculations to map and quantify noncovalent interactions possibly underlying the contact of the analytes with carbon dioxide and with the distinctive pendant groups of the CDMPC and (b) molecular dynamics (MD) simulations to visualize noncovalent interactions acting in the analyte 1/CDMPC chromatographic system in different media. The use of MD simulations to model enantioseparations performed in carbon dioxide-based media was not reported in the literature so far.</p>\",\"PeriodicalId\":11596,\"journal\":{\"name\":\"ELECTROPHORESIS\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ELECTROPHORESIS\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/elps.8156\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ELECTROPHORESIS","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/elps.8156","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

在过去的十年中,通过实验和计算分析的结合,证明了以纤维素三(3,5-二甲基苯基氨基甲酸酯)(CDMPC)为基础的手性柱和以正己烷为流动相的混合物为流动相,卤素键(HaB)可能有助于卤化手性分析物的高效液相色谱对映分离的结合和对映体识别机制。当作为超临界流体色谱(SFC)流动相的关键组分时,二氧化碳通常被认为是一种类似正己烷的非极性溶剂,因为它具有低介电常数和零分子偶极矩。另一方面,由于两个氧原子上存在非键电子,二氧化碳也可以作为氢键(HB)和HaB受体,与分析物对映体、手性选择器和共溶剂相互作用。在此基础上,我们报告了一项研究的结果,旨在评估二氧化碳在SFC中代替正己烷在HPLC中对卤素依赖的对映体分离的影响,该研究以atro异构卤代4,4'-联吡啶为分析物,以Lux Cellulose-1为cdmpc基手性柱。实验研究还通过计算研究进行了补充,使用(a)量子力学(QM)计算来绘制和量化分析物与二氧化碳和CDMPC的独特悬垂基团接触可能存在的非共价相互作用,以及(b)分子动力学(MD)模拟来可视化不同介质中分析物1/CDMPC色谱系统中的非共价相互作用。迄今为止,在文献中尚未报道使用MD模拟在二氧化碳基介质中进行的对映体分离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Insights Into the Enantioseparation of Polyhalogenated 4,4'-Bipyridines With a Cellulose Tris(3,5-Dimethylphenylcarbamate)-Based Chiral Column by Using Supercritical Fluid Chromatography.

In the last decade, by integrating experimental and computational analyses, it was demonstrated that halogen bond (HaB) may contribute to binding and enantiorecognition mechanisms underlying the HPLC enantioseparation of halogenated chiral analytes by using cellulose tris(3,5-dimethylphenylcarbamate) (CDMPC)-based chiral columns and n-hexane-based mixtures as mobile phases. When used as a pivotal component of the mobile phase in supercritical fluid chromatography (SFC), carbon dioxide is often considered as an n-hexane-like nonpolar solvent because of its low dielectric constant and zero molecular dipole moment. On the other hand, carbon dioxide may also serve as hydrogen bond (HB) and HaB acceptor due to the presence of nonbonding electrons on the two oxygen atoms, interacting with analyte enantiomers, chiral selectors, and co-solvents. On this basis, we report herein the results of a study aiming at evaluating the impact of using carbon dioxide in SFC in place of n-hexane in HPLC on halogen-dependent enantioseparations by using atropisomeric halogenated 4,4'-bipyridines as analytes and Lux Cellulose-1 as CDMPC-based chiral column. The experimental investigation was complemented by a computational study performed using (a) quantum mechanics (QM) calculations to map and quantify noncovalent interactions possibly underlying the contact of the analytes with carbon dioxide and with the distinctive pendant groups of the CDMPC and (b) molecular dynamics (MD) simulations to visualize noncovalent interactions acting in the analyte 1/CDMPC chromatographic system in different media. The use of MD simulations to model enantioseparations performed in carbon dioxide-based media was not reported in the literature so far.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ELECTROPHORESIS
ELECTROPHORESIS 生物-分析化学
CiteScore
6.30
自引率
13.80%
发文量
244
审稿时长
1.9 months
期刊介绍: ELECTROPHORESIS is an international journal that publishes original manuscripts on all aspects of electrophoresis, and liquid phase separations (e.g., HPLC, micro- and nano-LC, UHPLC, micro- and nano-fluidics, liquid-phase micro-extractions, etc.). Topics include new or improved analytical and preparative methods, sample preparation, development of theory, and innovative applications of electrophoretic and liquid phase separations methods in the study of nucleic acids, proteins, carbohydrates natural products, pharmaceuticals, food analysis, environmental species and other compounds of importance to the life sciences. Papers in the areas of microfluidics and proteomics, which are not limited to electrophoresis-based methods, will also be accepted for publication. Contributions focused on hyphenated and omics techniques are also of interest. Proteomics is within the scope, if related to its fundamentals and new technical approaches. Proteomics applications are only considered in particular cases. Papers describing the application of standard electrophoretic methods will not be considered. Papers on nanoanalysis intended for publication in ELECTROPHORESIS should focus on one or more of the following topics: • Nanoscale electrokinetics and phenomena related to electric double layer and/or confinement in nano-sized geometry • Single cell and subcellular analysis • Nanosensors and ultrasensitive detection aspects (e.g., involving quantum dots, "nanoelectrodes" or nanospray MS) • Nanoscale/nanopore DNA sequencing (next generation sequencing) • Micro- and nanoscale sample preparation • Nanoparticles and cells analyses by dielectrophoresis • Separation-based analysis using nanoparticles, nanotubes and nanowires.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信