Elizaveta Korunova, Vitali Sikirzhytski, Jeffery L Twiss, Paula Vasquez, Michael Shtutman
{"title":"基因编码纳米颗粒的单粒子跟踪:优化细胞质扩散研究的表达。","authors":"Elizaveta Korunova, Vitali Sikirzhytski, Jeffery L Twiss, Paula Vasquez, Michael Shtutman","doi":"10.1016/j.bpj.2025.05.025","DOIUrl":null,"url":null,"abstract":"<p><p>Single-particle tracking (SPT) is a powerful technique for probing the diverse physical properties of the cytoplasm. Genetically encoded nanoparticles provide an especially convenient tool for such investigations, as they can be expressed and tracked in cells via fluorescence. Among these, 40-nm genetically encoded multimerics (GEMs) provide a unique opportunity to explore the cytoplasm. Their size corresponds to that of ribosomes and big protein complexes, allowing us to investigate the effects of the cytoplasm on the diffusivity of these objects while excluding the influence of chemical interactions during stressful events and pathological conditions. However, the effects of GEM expression levels on the measured cytoplasmic diffusivity remain largely uncharacterized in mammalian cells. To optimize the GEMs tracking and assess expression level effects, we developed a doxycycline-inducible GEM expression system and compared it with a previously reported constitutive expression system. The inducible GEM expression system reduced the number of GEM particles from 2000 to as low as 5-500 per average 2D cell cytoplasmic area, depending on doxycycline concentration and incubation time. This optimization enabled adjustment of particle density for imaging and improved homogeneity across the cell population. Moreover, we enhanced the analysis of GEM diffusivity by incorporating an effective diffusion coefficient that accounts for the type of motion and by quantifying motion heterogeneity through standard deviations of particle displacements within and between cells.</p>","PeriodicalId":8922,"journal":{"name":"Biophysical journal","volume":" ","pages":"2222-2235"},"PeriodicalIF":3.2000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12256916/pdf/","citationCount":"0","resultStr":"{\"title\":\"Single-particle tracking of genetically encoded nanoparticles: Optimizing expression for cytoplasmic diffusion studies.\",\"authors\":\"Elizaveta Korunova, Vitali Sikirzhytski, Jeffery L Twiss, Paula Vasquez, Michael Shtutman\",\"doi\":\"10.1016/j.bpj.2025.05.025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Single-particle tracking (SPT) is a powerful technique for probing the diverse physical properties of the cytoplasm. Genetically encoded nanoparticles provide an especially convenient tool for such investigations, as they can be expressed and tracked in cells via fluorescence. Among these, 40-nm genetically encoded multimerics (GEMs) provide a unique opportunity to explore the cytoplasm. Their size corresponds to that of ribosomes and big protein complexes, allowing us to investigate the effects of the cytoplasm on the diffusivity of these objects while excluding the influence of chemical interactions during stressful events and pathological conditions. However, the effects of GEM expression levels on the measured cytoplasmic diffusivity remain largely uncharacterized in mammalian cells. To optimize the GEMs tracking and assess expression level effects, we developed a doxycycline-inducible GEM expression system and compared it with a previously reported constitutive expression system. The inducible GEM expression system reduced the number of GEM particles from 2000 to as low as 5-500 per average 2D cell cytoplasmic area, depending on doxycycline concentration and incubation time. This optimization enabled adjustment of particle density for imaging and improved homogeneity across the cell population. Moreover, we enhanced the analysis of GEM diffusivity by incorporating an effective diffusion coefficient that accounts for the type of motion and by quantifying motion heterogeneity through standard deviations of particle displacements within and between cells.</p>\",\"PeriodicalId\":8922,\"journal\":{\"name\":\"Biophysical journal\",\"volume\":\" \",\"pages\":\"2222-2235\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12256916/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysical journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.bpj.2025.05.025\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bpj.2025.05.025","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Single-particle tracking of genetically encoded nanoparticles: Optimizing expression for cytoplasmic diffusion studies.
Single-particle tracking (SPT) is a powerful technique for probing the diverse physical properties of the cytoplasm. Genetically encoded nanoparticles provide an especially convenient tool for such investigations, as they can be expressed and tracked in cells via fluorescence. Among these, 40-nm genetically encoded multimerics (GEMs) provide a unique opportunity to explore the cytoplasm. Their size corresponds to that of ribosomes and big protein complexes, allowing us to investigate the effects of the cytoplasm on the diffusivity of these objects while excluding the influence of chemical interactions during stressful events and pathological conditions. However, the effects of GEM expression levels on the measured cytoplasmic diffusivity remain largely uncharacterized in mammalian cells. To optimize the GEMs tracking and assess expression level effects, we developed a doxycycline-inducible GEM expression system and compared it with a previously reported constitutive expression system. The inducible GEM expression system reduced the number of GEM particles from 2000 to as low as 5-500 per average 2D cell cytoplasmic area, depending on doxycycline concentration and incubation time. This optimization enabled adjustment of particle density for imaging and improved homogeneity across the cell population. Moreover, we enhanced the analysis of GEM diffusivity by incorporating an effective diffusion coefficient that accounts for the type of motion and by quantifying motion heterogeneity through standard deviations of particle displacements within and between cells.
期刊介绍:
BJ publishes original articles, letters, and perspectives on important problems in modern biophysics. The papers should be written so as to be of interest to a broad community of biophysicists. BJ welcomes experimental studies that employ quantitative physical approaches for the study of biological systems, including or spanning scales from molecule to whole organism. Experimental studies of a purely descriptive or phenomenological nature, with no theoretical or mechanistic underpinning, are not appropriate for publication in BJ. Theoretical studies should offer new insights into the understanding ofexperimental results or suggest new experimentally testable hypotheses. Articles reporting significant methodological or technological advances, which have potential to open new areas of biophysical investigation, are also suitable for publication in BJ. Papers describing improvements in accuracy or speed of existing methods or extra detail within methods described previously are not suitable for BJ.