{"title":"有机磷阻燃剂诱导肺细胞表型和脂质组学改变。","authors":"Maryam Pyambri , Athina Pavlidou , Sílvia Lacorte , Joaquim Jaumot , Carmen Bedia","doi":"10.1016/j.chemphyslip.2025.105508","DOIUrl":null,"url":null,"abstract":"<div><div>Organophosphate flame retardants (OPFRs) are widely used as additives in plastics, electronics, and construction materials due to their flame-retardant properties. However, previous evidence suggests that OPFRs may pose potential respiratory health risks, including airway hyperresponsiveness, impaired lung function, and potential carcinogenic effects. This study evaluated the effects of seven OPFRs—TBOEP, TPhP, EHDPhP, TDCPP, TEHP, TCP, and TCEP—on the phenotype and lipidomic profile of A549 lung cancer cells, using both 2D and 3D culture models. TDCPP and TPhP significantly reduced cell viability, while TBOEP caused the highest increase in reactive oxygen species (ROS), followed by TPhP, TDCPP, and TCP. Moreover, TPhP, TDCPP, EHDPhP, and TBOEP also elevated the levels of pro-inflammatory cytokine interleukin-8 (IL-8). The lipidomic analysis of 3D cell spheroids exposed to OPFRs for 72 h revealed distinct lipid profiles for each compound at low (25 μM) and high (100 μM) doses. Common features were observed, particularly at high doses, including significant increases in triacylglycerol, diacylglycerol, ceramide, ether-linked phosphatidylethanolamine, and phosphatidylinositol species. These effects were generally more pronounced for TPhP, TDCPP, EHDPhP, TCP, and TBOEP. The accumulation of triglycerides, indicative of augmented energy storage, was confirmed by the visualization of lipid droplets formation. Results suggest disruptions in key toxicological pathways, including oxidative stress, inflammatory signaling (IL-8 upregulation), and apoptosis (ceramide accumulation), all implicated in lung diseases, such as COPD and fibrosis. These results provide a basis for assessing the health risks associated with OPFRs, highlighting the need for further research on chronic low-dose exposure levels.</div></div>","PeriodicalId":275,"journal":{"name":"Chemistry and Physics of Lipids","volume":"270 ","pages":"Article 105508"},"PeriodicalIF":2.8000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phenotypic and lipidomic alterations in lung cells induced by organophosphate flame retardants\",\"authors\":\"Maryam Pyambri , Athina Pavlidou , Sílvia Lacorte , Joaquim Jaumot , Carmen Bedia\",\"doi\":\"10.1016/j.chemphyslip.2025.105508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Organophosphate flame retardants (OPFRs) are widely used as additives in plastics, electronics, and construction materials due to their flame-retardant properties. However, previous evidence suggests that OPFRs may pose potential respiratory health risks, including airway hyperresponsiveness, impaired lung function, and potential carcinogenic effects. This study evaluated the effects of seven OPFRs—TBOEP, TPhP, EHDPhP, TDCPP, TEHP, TCP, and TCEP—on the phenotype and lipidomic profile of A549 lung cancer cells, using both 2D and 3D culture models. TDCPP and TPhP significantly reduced cell viability, while TBOEP caused the highest increase in reactive oxygen species (ROS), followed by TPhP, TDCPP, and TCP. Moreover, TPhP, TDCPP, EHDPhP, and TBOEP also elevated the levels of pro-inflammatory cytokine interleukin-8 (IL-8). The lipidomic analysis of 3D cell spheroids exposed to OPFRs for 72 h revealed distinct lipid profiles for each compound at low (25 μM) and high (100 μM) doses. Common features were observed, particularly at high doses, including significant increases in triacylglycerol, diacylglycerol, ceramide, ether-linked phosphatidylethanolamine, and phosphatidylinositol species. These effects were generally more pronounced for TPhP, TDCPP, EHDPhP, TCP, and TBOEP. The accumulation of triglycerides, indicative of augmented energy storage, was confirmed by the visualization of lipid droplets formation. Results suggest disruptions in key toxicological pathways, including oxidative stress, inflammatory signaling (IL-8 upregulation), and apoptosis (ceramide accumulation), all implicated in lung diseases, such as COPD and fibrosis. These results provide a basis for assessing the health risks associated with OPFRs, highlighting the need for further research on chronic low-dose exposure levels.</div></div>\",\"PeriodicalId\":275,\"journal\":{\"name\":\"Chemistry and Physics of Lipids\",\"volume\":\"270 \",\"pages\":\"Article 105508\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry and Physics of Lipids\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0009308425000441\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry and Physics of Lipids","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009308425000441","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Phenotypic and lipidomic alterations in lung cells induced by organophosphate flame retardants
Organophosphate flame retardants (OPFRs) are widely used as additives in plastics, electronics, and construction materials due to their flame-retardant properties. However, previous evidence suggests that OPFRs may pose potential respiratory health risks, including airway hyperresponsiveness, impaired lung function, and potential carcinogenic effects. This study evaluated the effects of seven OPFRs—TBOEP, TPhP, EHDPhP, TDCPP, TEHP, TCP, and TCEP—on the phenotype and lipidomic profile of A549 lung cancer cells, using both 2D and 3D culture models. TDCPP and TPhP significantly reduced cell viability, while TBOEP caused the highest increase in reactive oxygen species (ROS), followed by TPhP, TDCPP, and TCP. Moreover, TPhP, TDCPP, EHDPhP, and TBOEP also elevated the levels of pro-inflammatory cytokine interleukin-8 (IL-8). The lipidomic analysis of 3D cell spheroids exposed to OPFRs for 72 h revealed distinct lipid profiles for each compound at low (25 μM) and high (100 μM) doses. Common features were observed, particularly at high doses, including significant increases in triacylglycerol, diacylglycerol, ceramide, ether-linked phosphatidylethanolamine, and phosphatidylinositol species. These effects were generally more pronounced for TPhP, TDCPP, EHDPhP, TCP, and TBOEP. The accumulation of triglycerides, indicative of augmented energy storage, was confirmed by the visualization of lipid droplets formation. Results suggest disruptions in key toxicological pathways, including oxidative stress, inflammatory signaling (IL-8 upregulation), and apoptosis (ceramide accumulation), all implicated in lung diseases, such as COPD and fibrosis. These results provide a basis for assessing the health risks associated with OPFRs, highlighting the need for further research on chronic low-dose exposure levels.
期刊介绍:
Chemistry and Physics of Lipids publishes research papers and review articles on chemical and physical aspects of lipids with primary emphasis on the relationship of these properties to biological functions and to biomedical applications.
Accordingly, the journal covers: advances in synthetic and analytical lipid methodology; mass-spectrometry of lipids; chemical and physical characterisation of isolated structures; thermodynamics, phase behaviour, topology and dynamics of lipid assemblies; physicochemical studies into lipid-lipid and lipid-protein interactions in lipoproteins and in natural and model membranes; movement of lipids within, across and between membranes; intracellular lipid transfer; structure-function relationships and the nature of lipid-derived second messengers; chemical, physical and functional alterations of lipids induced by free radicals; enzymatic and non-enzymatic mechanisms of lipid peroxidation in cells, tissues, biofluids; oxidative lipidomics; and the role of lipids in the regulation of membrane-dependent biological processes.