化学工程实验方法:电子探针微分析- epma

IF 1.6 4区 工程技术 Q3 ENGINEERING, CHEMICAL
Viviane de Oliveira Campos, Felipe Fernandes Barbosa, Ellen Kadja Lima de Morais, Dulce Maria Araújo Melo, Jildimara de Jesus Santana, Gregory S. Patience
{"title":"化学工程实验方法:电子探针微分析- epma","authors":"Viviane de Oliveira Campos,&nbsp;Felipe Fernandes Barbosa,&nbsp;Ellen Kadja Lima de Morais,&nbsp;Dulce Maria Araújo Melo,&nbsp;Jildimara de Jesus Santana,&nbsp;Gregory S. Patience","doi":"10.1002/cjce.25712","DOIUrl":null,"url":null,"abstract":"<p>Electron probe microanalysis (EPMA) is a non-destructive spectroscopic technique to map the chemical composition—quantitative elemental distribution and layer thickness—with a micro-scale resolution. An electron beam illuminates the surface of a sample and produces backscattered electrons (BSE), secondary electrons (SE), characteristic X-rays, and light known as cathodoluminescence (CL). Combining energy dispersive spectrometry with wavelength-dispersive spectrometry improves trace analysis and differentiates overlapping X-ray lines, but the detection threshold is not much better than 100 ppm (parts per million). Implementing Monte Carlo simulation with better electronics and software are ongoing research areas to improve the method's precision, sensitivity, and spatial resolution. To detect Li, Be, and B (<span></span><math>\n <mrow>\n <mi>Z</mi>\n <mo>&lt;</mo>\n </mrow></math> 11) requires wavelength-dispersive X-ray spectroscopy (WDS), or soft X-ray emission spectroscopy (SXES), or a combination of BSE/EDS method. Researchers in metallurgy &amp; metallurgical engineering, mineralogy, geochemistry &amp; geophysics, and mining &amp; mineral processing apply the method most. Chemical engineering is ranked 21st among the 250 scientific categories that use the technique. It is also applied to reconstitute works of art and the antiquities. A bibliometric map identified four clusters of research and for each cluster the major nodes were: (1) geochemistry, (2) mechanical properties, microstructure, and alloys, (3) Fe, Cu, and Cr, and (4) phase equilibria.</p>","PeriodicalId":9400,"journal":{"name":"Canadian Journal of Chemical Engineering","volume":"103 7","pages":"3000-3011"},"PeriodicalIF":1.6000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cjce.25712","citationCount":"0","resultStr":"{\"title\":\"Experimental methods in chemical engineering: Electron probe micro-analysis—EPMA\",\"authors\":\"Viviane de Oliveira Campos,&nbsp;Felipe Fernandes Barbosa,&nbsp;Ellen Kadja Lima de Morais,&nbsp;Dulce Maria Araújo Melo,&nbsp;Jildimara de Jesus Santana,&nbsp;Gregory S. Patience\",\"doi\":\"10.1002/cjce.25712\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Electron probe microanalysis (EPMA) is a non-destructive spectroscopic technique to map the chemical composition—quantitative elemental distribution and layer thickness—with a micro-scale resolution. An electron beam illuminates the surface of a sample and produces backscattered electrons (BSE), secondary electrons (SE), characteristic X-rays, and light known as cathodoluminescence (CL). Combining energy dispersive spectrometry with wavelength-dispersive spectrometry improves trace analysis and differentiates overlapping X-ray lines, but the detection threshold is not much better than 100 ppm (parts per million). Implementing Monte Carlo simulation with better electronics and software are ongoing research areas to improve the method's precision, sensitivity, and spatial resolution. To detect Li, Be, and B (<span></span><math>\\n <mrow>\\n <mi>Z</mi>\\n <mo>&lt;</mo>\\n </mrow></math> 11) requires wavelength-dispersive X-ray spectroscopy (WDS), or soft X-ray emission spectroscopy (SXES), or a combination of BSE/EDS method. Researchers in metallurgy &amp; metallurgical engineering, mineralogy, geochemistry &amp; geophysics, and mining &amp; mineral processing apply the method most. Chemical engineering is ranked 21st among the 250 scientific categories that use the technique. It is also applied to reconstitute works of art and the antiquities. A bibliometric map identified four clusters of research and for each cluster the major nodes were: (1) geochemistry, (2) mechanical properties, microstructure, and alloys, (3) Fe, Cu, and Cr, and (4) phase equilibria.</p>\",\"PeriodicalId\":9400,\"journal\":{\"name\":\"Canadian Journal of Chemical Engineering\",\"volume\":\"103 7\",\"pages\":\"3000-3011\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cjce.25712\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cjce.25712\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjce.25712","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

电子探针显微分析(EPMA)是一种非破坏性的光谱分析技术,用于绘制化学成分-定量元素分布和层厚-具有微观分辨率。电子束照射样品表面,产生背散射电子(BSE)、二次电子(SE)、特征x射线和阴极发光(CL)。将能量色散光谱与波长色散光谱相结合,可以改善痕量分析,区分重叠的x射线线,但检测阈值并不比100 ppm(百万分之一)好多少。利用更好的电子和软件实现蒙特卡罗模拟是不断发展的研究领域,以提高方法的精度、灵敏度和空间分辨率。探测Li、Be和B (Z <;11)需要波长色散x射线光谱学(WDS),或软x射线发射光谱学(SXES),或BSE/EDS方法的组合。冶金研究人员;冶金工程、矿物学、地球化学等;地球物理学和采矿学选矿应用最多的方法。化学工程在使用该技术的250个科学类别中排名第21位。它也适用于重建艺术品和古物。一个文献计量图确定了四个研究集群,每个集群的主要节点是:(1)地球化学;(2)力学性能、微观结构和合金;(3)铁、铜和铬;(4)相平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental methods in chemical engineering: Electron probe micro-analysis—EPMA

Electron probe microanalysis (EPMA) is a non-destructive spectroscopic technique to map the chemical composition—quantitative elemental distribution and layer thickness—with a micro-scale resolution. An electron beam illuminates the surface of a sample and produces backscattered electrons (BSE), secondary electrons (SE), characteristic X-rays, and light known as cathodoluminescence (CL). Combining energy dispersive spectrometry with wavelength-dispersive spectrometry improves trace analysis and differentiates overlapping X-ray lines, but the detection threshold is not much better than 100 ppm (parts per million). Implementing Monte Carlo simulation with better electronics and software are ongoing research areas to improve the method's precision, sensitivity, and spatial resolution. To detect Li, Be, and B ( Z < 11) requires wavelength-dispersive X-ray spectroscopy (WDS), or soft X-ray emission spectroscopy (SXES), or a combination of BSE/EDS method. Researchers in metallurgy & metallurgical engineering, mineralogy, geochemistry & geophysics, and mining & mineral processing apply the method most. Chemical engineering is ranked 21st among the 250 scientific categories that use the technique. It is also applied to reconstitute works of art and the antiquities. A bibliometric map identified four clusters of research and for each cluster the major nodes were: (1) geochemistry, (2) mechanical properties, microstructure, and alloys, (3) Fe, Cu, and Cr, and (4) phase equilibria.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Canadian Journal of Chemical Engineering
Canadian Journal of Chemical Engineering 工程技术-工程:化工
CiteScore
3.60
自引率
14.30%
发文量
448
审稿时长
3.2 months
期刊介绍: The Canadian Journal of Chemical Engineering (CJChE) publishes original research articles, new theoretical interpretation or experimental findings and critical reviews in the science or industrial practice of chemical and biochemical processes. Preference is given to papers having a clearly indicated scope and applicability in any of the following areas: Fluid mechanics, heat and mass transfer, multiphase flows, separations processes, thermodynamics, process systems engineering, reactors and reaction kinetics, catalysis, interfacial phenomena, electrochemical phenomena, bioengineering, minerals processing and natural products and environmental and energy engineering. Papers that merely describe or present a conventional or routine analysis of existing processes will not be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信