纤维素合酶界面改变重新定义CESA复合物组装以提高纤维素生物质生产

IF 4.1 3区 工程技术 Q1 AGRONOMY
Linfang Wei, Huiying Cui, Jiahui Bi, Xili He, Yajun Guan, Yunheng Zhou, Bingcheng Xu, Chuang Ma, Sheng-You Huang, Shaolin Chen
{"title":"纤维素合酶界面改变重新定义CESA复合物组装以提高纤维素生物质生产","authors":"Linfang Wei,&nbsp;Huiying Cui,&nbsp;Jiahui Bi,&nbsp;Xili He,&nbsp;Yajun Guan,&nbsp;Yunheng Zhou,&nbsp;Bingcheng Xu,&nbsp;Chuang Ma,&nbsp;Sheng-You Huang,&nbsp;Shaolin Chen","doi":"10.1111/gcbb.70048","DOIUrl":null,"url":null,"abstract":"<p>Cellulose, a major component of plant cell walls and a critical bioeconomy resource, is synthesized by cellulose synthase complexes (CSCs). Understanding the assembly and function of CSCs, driven by cellulose synthase (CESA) proteins, is essential for enhancing biomass and tailoring cellulose properties for various applications. This study integrates evolutionary analysis, structural modeling, and functional data to elucidate the sequence-structure–function relationships of CESAs. We analyzed key interface residues within plant-conserved regions, transmembrane helices, and zinc-finger domains, revealing functional specialization through variations among duplicated CESAs, subfamilies, and plant groups. Our findings indicate that CESA gene duplication and interface residue divergence, coupled with tissue-specific and environment-dependent expression and post-translational modifications, drive CSC diversification. These alterations in CESAs may redefine CSC assembly. Heterologous expression of an evolutionarily distant CESA, such as <i>Sorghum bicolor</i> secondary wall CESA8 in Arabidopsis, may favor the formation of exogenous homomeric CSCs, leading to increased cellulose synthesis and enhanced plant growth. This increase in cellulose synthesis is associated with pectin demethylation, a process known to promote plant cell expansion. Based on these findings and previous studies, we propose a working model for enhanced biomass production. In this model, interface alterations in CESAs redefine CSC assembly, allowing overexpressed CESAs to form homomeric complexes that enhance cellulosic biomass production.</p>","PeriodicalId":55126,"journal":{"name":"Global Change Biology Bioenergy","volume":"17 7","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.70048","citationCount":"0","resultStr":"{\"title\":\"Interface Alterations in Cellulose Synthases Redefine CESA Complex Assembly to Enhance Cellulosic Biomass Production\",\"authors\":\"Linfang Wei,&nbsp;Huiying Cui,&nbsp;Jiahui Bi,&nbsp;Xili He,&nbsp;Yajun Guan,&nbsp;Yunheng Zhou,&nbsp;Bingcheng Xu,&nbsp;Chuang Ma,&nbsp;Sheng-You Huang,&nbsp;Shaolin Chen\",\"doi\":\"10.1111/gcbb.70048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cellulose, a major component of plant cell walls and a critical bioeconomy resource, is synthesized by cellulose synthase complexes (CSCs). Understanding the assembly and function of CSCs, driven by cellulose synthase (CESA) proteins, is essential for enhancing biomass and tailoring cellulose properties for various applications. This study integrates evolutionary analysis, structural modeling, and functional data to elucidate the sequence-structure–function relationships of CESAs. We analyzed key interface residues within plant-conserved regions, transmembrane helices, and zinc-finger domains, revealing functional specialization through variations among duplicated CESAs, subfamilies, and plant groups. Our findings indicate that CESA gene duplication and interface residue divergence, coupled with tissue-specific and environment-dependent expression and post-translational modifications, drive CSC diversification. These alterations in CESAs may redefine CSC assembly. Heterologous expression of an evolutionarily distant CESA, such as <i>Sorghum bicolor</i> secondary wall CESA8 in Arabidopsis, may favor the formation of exogenous homomeric CSCs, leading to increased cellulose synthesis and enhanced plant growth. This increase in cellulose synthesis is associated with pectin demethylation, a process known to promote plant cell expansion. Based on these findings and previous studies, we propose a working model for enhanced biomass production. In this model, interface alterations in CESAs redefine CSC assembly, allowing overexpressed CESAs to form homomeric complexes that enhance cellulosic biomass production.</p>\",\"PeriodicalId\":55126,\"journal\":{\"name\":\"Global Change Biology Bioenergy\",\"volume\":\"17 7\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.70048\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Change Biology Bioenergy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gcbb.70048\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology Bioenergy","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcbb.70048","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

纤维素是植物细胞壁的重要组成部分,是一种重要的生物经济资源,由纤维素合酶复合物(CSCs)合成。了解由纤维素合酶(CESA)蛋白驱动的CSCs的组装和功能,对于提高生物量和定制各种应用的纤维素性能至关重要。本研究结合演化分析、结构建模和功能数据来阐明CESAs的序列-结构-功能关系。我们分析了植物保守区、跨膜螺旋和锌指结构域内的关键界面残基,揭示了重复CESAs、亚科和植物类群之间的功能特化。我们的研究结果表明,CESA基因复制和界面残基分化,加上组织特异性和环境依赖性的表达和翻译后修饰,驱动了CSC的多样化。CESAs中的这些改变可能重新定义CSC组装。异源表达进化距离较远的CSCs,如拟南芥中高粱双色次生壁CESA8,可能有利于外源同源CSCs的形成,导致纤维素合成增加,促进植物生长。纤维素合成的增加与果胶去甲基化有关,这是一个已知的促进植物细胞扩增的过程。基于这些发现和以往的研究,我们提出了一个提高生物质生产的工作模型。在该模型中,CESAs的界面改变重新定义了CSC组装,允许过表达的CESAs形成增强纤维素生物质生产的同质复合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Interface Alterations in Cellulose Synthases Redefine CESA Complex Assembly to Enhance Cellulosic Biomass Production

Interface Alterations in Cellulose Synthases Redefine CESA Complex Assembly to Enhance Cellulosic Biomass Production

Cellulose, a major component of plant cell walls and a critical bioeconomy resource, is synthesized by cellulose synthase complexes (CSCs). Understanding the assembly and function of CSCs, driven by cellulose synthase (CESA) proteins, is essential for enhancing biomass and tailoring cellulose properties for various applications. This study integrates evolutionary analysis, structural modeling, and functional data to elucidate the sequence-structure–function relationships of CESAs. We analyzed key interface residues within plant-conserved regions, transmembrane helices, and zinc-finger domains, revealing functional specialization through variations among duplicated CESAs, subfamilies, and plant groups. Our findings indicate that CESA gene duplication and interface residue divergence, coupled with tissue-specific and environment-dependent expression and post-translational modifications, drive CSC diversification. These alterations in CESAs may redefine CSC assembly. Heterologous expression of an evolutionarily distant CESA, such as Sorghum bicolor secondary wall CESA8 in Arabidopsis, may favor the formation of exogenous homomeric CSCs, leading to increased cellulose synthesis and enhanced plant growth. This increase in cellulose synthesis is associated with pectin demethylation, a process known to promote plant cell expansion. Based on these findings and previous studies, we propose a working model for enhanced biomass production. In this model, interface alterations in CESAs redefine CSC assembly, allowing overexpressed CESAs to form homomeric complexes that enhance cellulosic biomass production.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Global Change Biology Bioenergy
Global Change Biology Bioenergy AGRONOMY-ENERGY & FUELS
CiteScore
10.30
自引率
7.10%
发文量
96
审稿时长
1.5 months
期刊介绍: GCB Bioenergy is an international journal publishing original research papers, review articles and commentaries that promote understanding of the interface between biological and environmental sciences and the production of fuels directly from plants, algae and waste. The scope of the journal extends to areas outside of biology to policy forum, socioeconomic analyses, technoeconomic analyses and systems analysis. Papers do not need a global change component for consideration for publication, it is viewed as implicit that most bioenergy will be beneficial in avoiding at least a part of the fossil fuel energy that would otherwise be used. Key areas covered by the journal: Bioenergy feedstock and bio-oil production: energy crops and algae their management,, genomics, genetic improvements, planting, harvesting, storage, transportation, integrated logistics, production modeling, composition and its modification, pests, diseases and weeds of feedstocks. Manuscripts concerning alternative energy based on biological mimicry are also encouraged (e.g. artificial photosynthesis). Biological Residues/Co-products: from agricultural production, forestry and plantations (stover, sugar, bio-plastics, etc.), algae processing industries, and municipal sources (MSW). Bioenergy and the Environment: ecosystem services, carbon mitigation, land use change, life cycle assessment, energy and greenhouse gas balances, water use, water quality, assessment of sustainability, and biodiversity issues. Bioenergy Socioeconomics: examining the economic viability or social acceptability of crops, crops systems and their processing, including genetically modified organisms [GMOs], health impacts of bioenergy systems. Bioenergy Policy: legislative developments affecting biofuels and bioenergy. Bioenergy Systems Analysis: examining biological developments in a whole systems context.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信