稳定gan的多样性:模态崩溃缓解策略的系统综述

IF 1.8 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Matthew Cobbinah, Henry Nunoo-Mensah, Prince Ebenezer Adjei, Francisca Adoma Acheampong, Isaac Acquah, Eric Tutu Tchao, Andrew Selasi Agbemenu, Jerry John Kponyo, Emmanuel Abaidoo
{"title":"稳定gan的多样性:模态崩溃缓解策略的系统综述","authors":"Matthew Cobbinah,&nbsp;Henry Nunoo-Mensah,&nbsp;Prince Ebenezer Adjei,&nbsp;Francisca Adoma Acheampong,&nbsp;Isaac Acquah,&nbsp;Eric Tutu Tchao,&nbsp;Andrew Selasi Agbemenu,&nbsp;Jerry John Kponyo,&nbsp;Emmanuel Abaidoo","doi":"10.1002/eng2.70209","DOIUrl":null,"url":null,"abstract":"<p>Mode collapse poses a critical challenge in training generative adversarial networks (GANs), particularly in applications such as medical imaging, where diverse and clinically relevant outputs are essential. This systematic review methodically examines the causes and impacts of mode collapse, classifies mitigation strategies into four categories; architectural modifications, loss function adaptations, regularization techniques, and hybrid techniques, and evaluates their effectiveness. Hybrid approaches, combining adversarial loss adaptation, architectural modifications, and regularization terms, are particularly promising. Additionally, integrating GANs with frameworks such as federated learning, diffusion models, and attention mechanisms shows potential to improve stability and diversity. By highlighting successful strategies and identifying gaps, especially in domain-specific contexts such as medical imaging, this review aims to advance GAN applications in low-resource regions and beyond, improving healthcare and other critical sectors.</p>","PeriodicalId":72922,"journal":{"name":"Engineering reports : open access","volume":"7 6","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eng2.70209","citationCount":"0","resultStr":"{\"title\":\"Diversity in Stable GANs: A Systematic Review of Mode Collapse Mitigation Strategies\",\"authors\":\"Matthew Cobbinah,&nbsp;Henry Nunoo-Mensah,&nbsp;Prince Ebenezer Adjei,&nbsp;Francisca Adoma Acheampong,&nbsp;Isaac Acquah,&nbsp;Eric Tutu Tchao,&nbsp;Andrew Selasi Agbemenu,&nbsp;Jerry John Kponyo,&nbsp;Emmanuel Abaidoo\",\"doi\":\"10.1002/eng2.70209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Mode collapse poses a critical challenge in training generative adversarial networks (GANs), particularly in applications such as medical imaging, where diverse and clinically relevant outputs are essential. This systematic review methodically examines the causes and impacts of mode collapse, classifies mitigation strategies into four categories; architectural modifications, loss function adaptations, regularization techniques, and hybrid techniques, and evaluates their effectiveness. Hybrid approaches, combining adversarial loss adaptation, architectural modifications, and regularization terms, are particularly promising. Additionally, integrating GANs with frameworks such as federated learning, diffusion models, and attention mechanisms shows potential to improve stability and diversity. By highlighting successful strategies and identifying gaps, especially in domain-specific contexts such as medical imaging, this review aims to advance GAN applications in low-resource regions and beyond, improving healthcare and other critical sectors.</p>\",\"PeriodicalId\":72922,\"journal\":{\"name\":\"Engineering reports : open access\",\"volume\":\"7 6\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eng2.70209\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering reports : open access\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eng2.70209\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering reports : open access","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eng2.70209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

模式崩溃对生成对抗网络(gan)的训练提出了严峻的挑战,特别是在医学成像等应用中,在这些应用中,多样化和临床相关的输出是必不可少的。本系统综述有条不紊地考察了模态崩溃的原因和影响,将缓解策略分为四类;架构修改、损失函数适应、正则化技术和混合技术,并评估它们的有效性。结合对抗性损失适应、架构修改和正则化条款的混合方法尤其有前途。此外,将gan与联邦学习、扩散模型和注意力机制等框架集成在一起,显示出提高稳定性和多样性的潜力。通过强调成功的策略和确定差距,特别是在特定领域的背景下,如医学成像,本综述旨在推进氮化镓在低资源地区及其他地区的应用,改善医疗保健和其他关键部门。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diversity in Stable GANs: A Systematic Review of Mode Collapse Mitigation Strategies

Mode collapse poses a critical challenge in training generative adversarial networks (GANs), particularly in applications such as medical imaging, where diverse and clinically relevant outputs are essential. This systematic review methodically examines the causes and impacts of mode collapse, classifies mitigation strategies into four categories; architectural modifications, loss function adaptations, regularization techniques, and hybrid techniques, and evaluates their effectiveness. Hybrid approaches, combining adversarial loss adaptation, architectural modifications, and regularization terms, are particularly promising. Additionally, integrating GANs with frameworks such as federated learning, diffusion models, and attention mechanisms shows potential to improve stability and diversity. By highlighting successful strategies and identifying gaps, especially in domain-specific contexts such as medical imaging, this review aims to advance GAN applications in low-resource regions and beyond, improving healthcare and other critical sectors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信