水声应用的疏水氟化聚氨酯密封剂

IF 2.7 3区 化学 Q2 POLYMER SCIENCE
Zhihua Li, Ziyi Wang, Yidan Zhang, Ziteng Guo, Bo Zhao, Sainan Liu
{"title":"水声应用的疏水氟化聚氨酯密封剂","authors":"Zhihua Li,&nbsp;Ziyi Wang,&nbsp;Yidan Zhang,&nbsp;Ziteng Guo,&nbsp;Bo Zhao,&nbsp;Sainan Liu","doi":"10.1002/app.57092","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Polyurethane elastomers are widely employed as underwater transducer encapsulants, owing to their distinctive mechanical and acoustic properties. However, the lack of hydrophobicity of polyurethanes remains a problem to be resolved. A series of hydrophobic fluorine-modified polyurethanes (FPUs) were synthesized by incorporating 1H,1H,2H,2H-perfluorodecyltriMethoxysilane (FAS-17) into polybutadiene-based polyurethane. These fluorinated chain extenders enhance the hydrophobicity by reducing surface energy and increase physical cross-linking points, thereby improving the material's overall performance. Remarkably, at a FAS-17 content of 4 wt%, the water contact angle of FPU-2 rises to 106.0°, with a water absorption rate of only 0.189%. This corresponds to a substantial 58.6% reduction in water absorption compared to unmodified polyurethane (PU), demonstrating its exceptional hydrophobicity. Additionally, the introduction of fluorine-containing chains enhances mechanical properties, with FPU-2 having an elongation at break (452%) and tensile strength (10.93 MPa). These results demonstrate that fluorinated polyurethane not only retains the essential properties for underwater sound transmission but also significantly improves hydrophobicity.</p>\n </div>","PeriodicalId":183,"journal":{"name":"Journal of Applied Polymer Science","volume":"142 26","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrophobic Fluorinated Polyurethane Encapsulants for Hydroacoustic Applications\",\"authors\":\"Zhihua Li,&nbsp;Ziyi Wang,&nbsp;Yidan Zhang,&nbsp;Ziteng Guo,&nbsp;Bo Zhao,&nbsp;Sainan Liu\",\"doi\":\"10.1002/app.57092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Polyurethane elastomers are widely employed as underwater transducer encapsulants, owing to their distinctive mechanical and acoustic properties. However, the lack of hydrophobicity of polyurethanes remains a problem to be resolved. A series of hydrophobic fluorine-modified polyurethanes (FPUs) were synthesized by incorporating 1H,1H,2H,2H-perfluorodecyltriMethoxysilane (FAS-17) into polybutadiene-based polyurethane. These fluorinated chain extenders enhance the hydrophobicity by reducing surface energy and increase physical cross-linking points, thereby improving the material's overall performance. Remarkably, at a FAS-17 content of 4 wt%, the water contact angle of FPU-2 rises to 106.0°, with a water absorption rate of only 0.189%. This corresponds to a substantial 58.6% reduction in water absorption compared to unmodified polyurethane (PU), demonstrating its exceptional hydrophobicity. Additionally, the introduction of fluorine-containing chains enhances mechanical properties, with FPU-2 having an elongation at break (452%) and tensile strength (10.93 MPa). These results demonstrate that fluorinated polyurethane not only retains the essential properties for underwater sound transmission but also significantly improves hydrophobicity.</p>\\n </div>\",\"PeriodicalId\":183,\"journal\":{\"name\":\"Journal of Applied Polymer Science\",\"volume\":\"142 26\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Polymer Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/app.57092\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/app.57092","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

聚氨酯弹性体由于其独特的力学性能和声学性能,被广泛用作水下换能器封装材料。然而,聚氨酯缺乏疏水性仍然是一个有待解决的问题。将1H,1H,2H,2H-全氟癸基三甲氧基硅烷(FAS-17)掺入聚丁二烯基聚氨酯中,合成了一系列疏水氟改性聚氨酯(fpu)。这些氟化扩链剂通过降低表面能和增加物理交联点来增强疏水性,从而改善材料的整体性能。值得注意的是,当FAS-17含量为4 wt%时,FPU-2的水接触角上升到106.0°,吸水率仅为0.189%。与未改性的聚氨酯(PU)相比,这相当于大幅减少了58.6%的吸水性,证明了其卓越的疏水性。此外,引入含氟链提高了机械性能,FPU-2具有断裂伸长率(452%)和抗拉强度(10.93 MPa)。结果表明,氟化聚氨酯不仅保留了水声传输的基本性能,而且显著提高了疏水性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hydrophobic Fluorinated Polyurethane Encapsulants for Hydroacoustic Applications

Polyurethane elastomers are widely employed as underwater transducer encapsulants, owing to their distinctive mechanical and acoustic properties. However, the lack of hydrophobicity of polyurethanes remains a problem to be resolved. A series of hydrophobic fluorine-modified polyurethanes (FPUs) were synthesized by incorporating 1H,1H,2H,2H-perfluorodecyltriMethoxysilane (FAS-17) into polybutadiene-based polyurethane. These fluorinated chain extenders enhance the hydrophobicity by reducing surface energy and increase physical cross-linking points, thereby improving the material's overall performance. Remarkably, at a FAS-17 content of 4 wt%, the water contact angle of FPU-2 rises to 106.0°, with a water absorption rate of only 0.189%. This corresponds to a substantial 58.6% reduction in water absorption compared to unmodified polyurethane (PU), demonstrating its exceptional hydrophobicity. Additionally, the introduction of fluorine-containing chains enhances mechanical properties, with FPU-2 having an elongation at break (452%) and tensile strength (10.93 MPa). These results demonstrate that fluorinated polyurethane not only retains the essential properties for underwater sound transmission but also significantly improves hydrophobicity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Polymer Science
Journal of Applied Polymer Science 化学-高分子科学
CiteScore
5.70
自引率
10.00%
发文量
1280
审稿时长
2.7 months
期刊介绍: The Journal of Applied Polymer Science is the largest peer-reviewed publication in polymers, #3 by total citations, and features results with real-world impact on membranes, polysaccharides, and much more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信