Shazidul Hussain, Dipan Sarma, Sangita Majumder, Debajyoti Bhattacharjee, Khuloud A. Alibrahim, Abdullah N. Alodhayb, Hemant Agarwal and Syed Arshad Hussain
{"title":"绿色合成银纳米粒子调制聚二乙炔基比色农药传感器†","authors":"Shazidul Hussain, Dipan Sarma, Sangita Majumder, Debajyoti Bhattacharjee, Khuloud A. Alibrahim, Abdullah N. Alodhayb, Hemant Agarwal and Syed Arshad Hussain","doi":"10.1039/D5RA01243K","DOIUrl":null,"url":null,"abstract":"<p >Recently, pesticide contamination has become a major threat to public health and ecosystems owing to its widespread and uncontrolled use in agriculture. Herein, we introduce a paper-based colorimetric sensing platform using polydiacetylene (PDA) that can be used as an efficient and cost-effective method for detecting pesticide residues. The sensor is designed on a nitrate cellulose membrane using 10,12-henicosadiynoic acid (HCDA), monomer of PDA, green-synthesized silver nanoparticles (AgNPs) and saponite clay (SC). The AgNPs were synthesized from <em>Araucaria heterophylla</em> leaf extract following a green synthesis protocol. The synthesized AgNPs were characterized through UV-Vis absorption, FESEM, TEM, DLS, XRD and FTIR spectroscopy. Moreover, the PDA phase change in the presence of AgNPs was optimized by varying AgNP concentration. The designed paper sensors responded to three commonly used pesticides, namely, cypermethrin (P<small><sub>1</sub></small>), pretilachlor (P<small><sub>2</sub></small>) and chlorpyriphos/cypermethrin (P<small><sub>3</sub></small>). It was found that the detection of different pesticides in different concentration regions can be achieved by varying AgNP to HCDA ratios. To determine pesticide concentration from the colorimetric response, a MATLAB-based program was developed for analyzing the RGB values corresponding to colour changes before and after exposure. The proposed sensor is similar to litmus paper in which sensing is achieved based on the visible colour change upon pesticide exposure. Therefore, it is economical and easy to use. This pesticide-detecting sensor provides measurements with high accuracy in a wide range of ambient conditions and is therefore a perfect portable system for point-of-care/on-site detection of pesticide residues.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 23","pages":" 18372-18391"},"PeriodicalIF":4.6000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d5ra01243k?page=search","citationCount":"0","resultStr":"{\"title\":\"Green-synthesized silver nanoparticle-modulated polydiacetylene-based colorimetric pesticide sensor†\",\"authors\":\"Shazidul Hussain, Dipan Sarma, Sangita Majumder, Debajyoti Bhattacharjee, Khuloud A. Alibrahim, Abdullah N. Alodhayb, Hemant Agarwal and Syed Arshad Hussain\",\"doi\":\"10.1039/D5RA01243K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Recently, pesticide contamination has become a major threat to public health and ecosystems owing to its widespread and uncontrolled use in agriculture. Herein, we introduce a paper-based colorimetric sensing platform using polydiacetylene (PDA) that can be used as an efficient and cost-effective method for detecting pesticide residues. The sensor is designed on a nitrate cellulose membrane using 10,12-henicosadiynoic acid (HCDA), monomer of PDA, green-synthesized silver nanoparticles (AgNPs) and saponite clay (SC). The AgNPs were synthesized from <em>Araucaria heterophylla</em> leaf extract following a green synthesis protocol. The synthesized AgNPs were characterized through UV-Vis absorption, FESEM, TEM, DLS, XRD and FTIR spectroscopy. Moreover, the PDA phase change in the presence of AgNPs was optimized by varying AgNP concentration. The designed paper sensors responded to three commonly used pesticides, namely, cypermethrin (P<small><sub>1</sub></small>), pretilachlor (P<small><sub>2</sub></small>) and chlorpyriphos/cypermethrin (P<small><sub>3</sub></small>). It was found that the detection of different pesticides in different concentration regions can be achieved by varying AgNP to HCDA ratios. To determine pesticide concentration from the colorimetric response, a MATLAB-based program was developed for analyzing the RGB values corresponding to colour changes before and after exposure. The proposed sensor is similar to litmus paper in which sensing is achieved based on the visible colour change upon pesticide exposure. Therefore, it is economical and easy to use. This pesticide-detecting sensor provides measurements with high accuracy in a wide range of ambient conditions and is therefore a perfect portable system for point-of-care/on-site detection of pesticide residues.</p>\",\"PeriodicalId\":102,\"journal\":{\"name\":\"RSC Advances\",\"volume\":\" 23\",\"pages\":\" 18372-18391\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d5ra01243k?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC Advances\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d5ra01243k\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d5ra01243k","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Recently, pesticide contamination has become a major threat to public health and ecosystems owing to its widespread and uncontrolled use in agriculture. Herein, we introduce a paper-based colorimetric sensing platform using polydiacetylene (PDA) that can be used as an efficient and cost-effective method for detecting pesticide residues. The sensor is designed on a nitrate cellulose membrane using 10,12-henicosadiynoic acid (HCDA), monomer of PDA, green-synthesized silver nanoparticles (AgNPs) and saponite clay (SC). The AgNPs were synthesized from Araucaria heterophylla leaf extract following a green synthesis protocol. The synthesized AgNPs were characterized through UV-Vis absorption, FESEM, TEM, DLS, XRD and FTIR spectroscopy. Moreover, the PDA phase change in the presence of AgNPs was optimized by varying AgNP concentration. The designed paper sensors responded to three commonly used pesticides, namely, cypermethrin (P1), pretilachlor (P2) and chlorpyriphos/cypermethrin (P3). It was found that the detection of different pesticides in different concentration regions can be achieved by varying AgNP to HCDA ratios. To determine pesticide concentration from the colorimetric response, a MATLAB-based program was developed for analyzing the RGB values corresponding to colour changes before and after exposure. The proposed sensor is similar to litmus paper in which sensing is achieved based on the visible colour change upon pesticide exposure. Therefore, it is economical and easy to use. This pesticide-detecting sensor provides measurements with high accuracy in a wide range of ambient conditions and is therefore a perfect portable system for point-of-care/on-site detection of pesticide residues.
期刊介绍:
An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.