微Ni团簇和Pt纳米粒子协同作用促进高效稳定的电催化甲醇氧化和水电解析氢

IF 9.2 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Green Chemistry Pub Date : 2025-05-07 DOI:10.1039/d5gc00992h
Jie Huang , Min Tian , Liang Tong , Lihua Zhu , Lingling Li , Xianping Liao , Qingsheng Gao , Weizhen Wang , Zhiqing Yang , Tongxiang Liang , Hengqiang Ye
{"title":"微Ni团簇和Pt纳米粒子协同作用促进高效稳定的电催化甲醇氧化和水电解析氢","authors":"Jie Huang ,&nbsp;Min Tian ,&nbsp;Liang Tong ,&nbsp;Lihua Zhu ,&nbsp;Lingling Li ,&nbsp;Xianping Liao ,&nbsp;Qingsheng Gao ,&nbsp;Weizhen Wang ,&nbsp;Zhiqing Yang ,&nbsp;Tongxiang Liang ,&nbsp;Hengqiang Ye","doi":"10.1039/d5gc00992h","DOIUrl":null,"url":null,"abstract":"<div><div>Herein, we prepared a catalyst composed of tiny Ni clusters (Ni<sub>cs</sub>) coexisting with Pt nanoparticles (Pt<sub>NPs</sub>), denoted as Pt<sub>10</sub>/Ni-ZrO<sub>2</sub>-NC (NC refers to nitrogen-doped carbon). A porphyrin-based metal–organic framework (PCN-222(Ni)) was synthesized and then subjected to high-temperature pyrolysis to yield Ni-ZrO<sub>2</sub>-NC (containing tiny Ni<sub>cs</sub>). Subsequently, Pt<sub>NPs</sub> were deposited on Ni-ZrO<sub>2</sub>-NC by NaBH<sub>4</sub>-mediated chemical reduction. The presence of Nics reduces the electron density of Pt<sub>NPs</sub>, thereby enhancing electron transfer between Pt<sub>NPs</sub> and the support. As a result, Pt<sub>10</sub>/Ni-ZrO<sub>2</sub>-NC exhibits markedly improved performance in both hydrogen evolution (HER: 57.5 mV at 100 mA cm<sup>−2</sup>; MOR: mass activity of 5.31 A mg<sub>Pt</sub><sup>−1</sup>) compared with Pt<sub>10</sub>/ZrO<sub>2</sub>-NC (HER: 91.7 mV at 100 mA cm<sup>−2</sup>; MOR: MA-3.33 A mg<sub>Pt</sub><sup>−1</sup>). Ni<sub>cs</sub> provide additional active sites for water dissociation due to the oxophilicity of Ni, thus accelerating H–OH bond cleavage and promoting the transfer of H<sub>ads</sub> to adjacent Pt<sub>NPs</sub>, which subsequently form H<sub>2</sub>. In the MOR, Ni<sub>cs</sub> similarly act as extra sites for OH* adsorption to facilitate CO<sub>ads</sub> removal, thereby enhancing both the activity and stability of the catalyst. CO stripping experiments further reveal that Pt<sub>10</sub>/Ni-ZrO<sub>2</sub>-NC oxidizes CO at lower potentials, demonstrating its excellent CO tolerance. In a two-electrode electrolytic cell, Pt<sub>10</sub>/Ni-ZrO<sub>2</sub>-NC applied to a MOR–HER system [(Pt<sub>10</sub>/Ni-ZrO<sub>2</sub>-NC) MOR∥HER (Pt<sub>10</sub>/Ni-ZrO<sub>2</sub>-NC)] achieves a current density of 50 mA cm<sup>−2</sup> and a cell voltage of only 0.846 V—substantially lower than that required for ([(Pt<sub>10</sub>/Ni-ZrO<sub>2</sub>-NC) OER∥HER (Pt<sub>10</sub>/Ni-ZrO<sub>2</sub>-NC)], 1.435 V) or ([(IrO<sub>2</sub>) OER∥HER (Pt/C-JM)], 1.720 V).</div></div>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":"27 22","pages":"Pages 6619-6629"},"PeriodicalIF":9.2000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergism of tiny Ni clusters and Pt nanoparticles promoting efficient and stable electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis†\",\"authors\":\"Jie Huang ,&nbsp;Min Tian ,&nbsp;Liang Tong ,&nbsp;Lihua Zhu ,&nbsp;Lingling Li ,&nbsp;Xianping Liao ,&nbsp;Qingsheng Gao ,&nbsp;Weizhen Wang ,&nbsp;Zhiqing Yang ,&nbsp;Tongxiang Liang ,&nbsp;Hengqiang Ye\",\"doi\":\"10.1039/d5gc00992h\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Herein, we prepared a catalyst composed of tiny Ni clusters (Ni<sub>cs</sub>) coexisting with Pt nanoparticles (Pt<sub>NPs</sub>), denoted as Pt<sub>10</sub>/Ni-ZrO<sub>2</sub>-NC (NC refers to nitrogen-doped carbon). A porphyrin-based metal–organic framework (PCN-222(Ni)) was synthesized and then subjected to high-temperature pyrolysis to yield Ni-ZrO<sub>2</sub>-NC (containing tiny Ni<sub>cs</sub>). Subsequently, Pt<sub>NPs</sub> were deposited on Ni-ZrO<sub>2</sub>-NC by NaBH<sub>4</sub>-mediated chemical reduction. The presence of Nics reduces the electron density of Pt<sub>NPs</sub>, thereby enhancing electron transfer between Pt<sub>NPs</sub> and the support. As a result, Pt<sub>10</sub>/Ni-ZrO<sub>2</sub>-NC exhibits markedly improved performance in both hydrogen evolution (HER: 57.5 mV at 100 mA cm<sup>−2</sup>; MOR: mass activity of 5.31 A mg<sub>Pt</sub><sup>−1</sup>) compared with Pt<sub>10</sub>/ZrO<sub>2</sub>-NC (HER: 91.7 mV at 100 mA cm<sup>−2</sup>; MOR: MA-3.33 A mg<sub>Pt</sub><sup>−1</sup>). Ni<sub>cs</sub> provide additional active sites for water dissociation due to the oxophilicity of Ni, thus accelerating H–OH bond cleavage and promoting the transfer of H<sub>ads</sub> to adjacent Pt<sub>NPs</sub>, which subsequently form H<sub>2</sub>. In the MOR, Ni<sub>cs</sub> similarly act as extra sites for OH* adsorption to facilitate CO<sub>ads</sub> removal, thereby enhancing both the activity and stability of the catalyst. CO stripping experiments further reveal that Pt<sub>10</sub>/Ni-ZrO<sub>2</sub>-NC oxidizes CO at lower potentials, demonstrating its excellent CO tolerance. In a two-electrode electrolytic cell, Pt<sub>10</sub>/Ni-ZrO<sub>2</sub>-NC applied to a MOR–HER system [(Pt<sub>10</sub>/Ni-ZrO<sub>2</sub>-NC) MOR∥HER (Pt<sub>10</sub>/Ni-ZrO<sub>2</sub>-NC)] achieves a current density of 50 mA cm<sup>−2</sup> and a cell voltage of only 0.846 V—substantially lower than that required for ([(Pt<sub>10</sub>/Ni-ZrO<sub>2</sub>-NC) OER∥HER (Pt<sub>10</sub>/Ni-ZrO<sub>2</sub>-NC)], 1.435 V) or ([(IrO<sub>2</sub>) OER∥HER (Pt/C-JM)], 1.720 V).</div></div>\",\"PeriodicalId\":78,\"journal\":{\"name\":\"Green Chemistry\",\"volume\":\"27 22\",\"pages\":\"Pages 6619-6629\"},\"PeriodicalIF\":9.2000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1463926225003966\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1463926225003966","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文制备了一种由微小Ni簇(Nics)与Pt纳米颗粒(PtNPs)共存的催化剂,标记为Pt10/Ni- zro2 -NC (NC为氮掺杂碳)。合成了卟啉基金属有机骨架(PCN-222(Ni)),经高温热解得到Ni- zro2 - nc(含微小Nics)。随后,通过nabh4介导的化学还原将PtNPs沉积在Ni-ZrO2-NC上。nic的存在降低了PtNPs的电子密度,从而增强了PtNPs与载体之间的电子转移。结果表明,Pt10/Ni-ZrO2-NC的析氢性能显著提高(HER: 57.5 mV, 100 mA cm−2;MOR:与Pt10/ZrO2-NC相比,质量活性为5.31 A mgPt−1 (HER: 91.7 mV at 100 mA cm−2;MOR: MA-3.33 A mgPt−1)。由于Ni的亲氧性,Nics为水解离提供了额外的活性位点,从而加速H-OH键的裂解,促进Hads向相邻PtNPs转移,随后形成H2。在MOR中,Nics类似地作为OH*吸附的额外位点,以促进负载的去除,从而提高催化剂的活性和稳定性。CO剥离实验进一步表明,Pt10/Ni-ZrO2-NC在较低电位下氧化CO,表现出优异的CO耐受性。在双电极电解槽中,将Pt10/Ni-ZrO2-NC应用于more - HER系统[(Pt10/Ni-ZrO2-NC) MOR∥HER (Pt10/Ni-ZrO2-NC)],电流密度为50 mA cm - 2,电池电压仅为0.846 V,大大低于([(Pt10/Ni-ZrO2-NC) OER∥HER (Pt10/Ni-ZrO2-NC)], 1.435 V)或([(IrO2) OER∥HER (Pt/C-JM)], 1.720 V)所需的电压。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synergism of tiny Ni clusters and Pt nanoparticles promoting efficient and stable electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis†
Herein, we prepared a catalyst composed of tiny Ni clusters (Nics) coexisting with Pt nanoparticles (PtNPs), denoted as Pt10/Ni-ZrO2-NC (NC refers to nitrogen-doped carbon). A porphyrin-based metal–organic framework (PCN-222(Ni)) was synthesized and then subjected to high-temperature pyrolysis to yield Ni-ZrO2-NC (containing tiny Nics). Subsequently, PtNPs were deposited on Ni-ZrO2-NC by NaBH4-mediated chemical reduction. The presence of Nics reduces the electron density of PtNPs, thereby enhancing electron transfer between PtNPs and the support. As a result, Pt10/Ni-ZrO2-NC exhibits markedly improved performance in both hydrogen evolution (HER: 57.5 mV at 100 mA cm−2; MOR: mass activity of 5.31 A mgPt−1) compared with Pt10/ZrO2-NC (HER: 91.7 mV at 100 mA cm−2; MOR: MA-3.33 A mgPt−1). Nics provide additional active sites for water dissociation due to the oxophilicity of Ni, thus accelerating H–OH bond cleavage and promoting the transfer of Hads to adjacent PtNPs, which subsequently form H2. In the MOR, Nics similarly act as extra sites for OH* adsorption to facilitate COads removal, thereby enhancing both the activity and stability of the catalyst. CO stripping experiments further reveal that Pt10/Ni-ZrO2-NC oxidizes CO at lower potentials, demonstrating its excellent CO tolerance. In a two-electrode electrolytic cell, Pt10/Ni-ZrO2-NC applied to a MOR–HER system [(Pt10/Ni-ZrO2-NC) MOR∥HER (Pt10/Ni-ZrO2-NC)] achieves a current density of 50 mA cm−2 and a cell voltage of only 0.846 V—substantially lower than that required for ([(Pt10/Ni-ZrO2-NC) OER∥HER (Pt10/Ni-ZrO2-NC)], 1.435 V) or ([(IrO2) OER∥HER (Pt/C-JM)], 1.720 V).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Green Chemistry
Green Chemistry 化学-化学综合
CiteScore
16.10
自引率
7.10%
发文量
677
审稿时长
1.4 months
期刊介绍: Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信