通过爆炸估计拉普拉斯的Lp值

IF 2.3 2区 数学 Q1 MATHEMATICS
Jan Lewenstein-Sanpera , Xavier Ros-Oton
{"title":"通过爆炸估计拉普拉斯的Lp值","authors":"Jan Lewenstein-Sanpera ,&nbsp;Xavier Ros-Oton","doi":"10.1016/j.jde.2025.113478","DOIUrl":null,"url":null,"abstract":"<div><div>In this note we provide a new proof of the <span><math><msup><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>p</mi></mrow></msup></math></span> <em>Calderón-Zygmund</em> regularity estimates for the Laplacian, i.e., <span><math><mi>Δ</mi><mi>u</mi><mo>=</mo><mi>f</mi></math></span> and its parabolic counterpart <span><math><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>u</mi><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>=</mo><mi>f</mi></math></span>. Our proof is an adaptation of a contradiction and compactness argument that so far had been only used to prove estimates in Hölder spaces. This new approach is simpler than previous ones, and avoids the use of any interpolation theorem.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"441 ","pages":"Article 113478"},"PeriodicalIF":2.3000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lp estimates for the Laplacian via blow-up\",\"authors\":\"Jan Lewenstein-Sanpera ,&nbsp;Xavier Ros-Oton\",\"doi\":\"10.1016/j.jde.2025.113478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this note we provide a new proof of the <span><math><msup><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>p</mi></mrow></msup></math></span> <em>Calderón-Zygmund</em> regularity estimates for the Laplacian, i.e., <span><math><mi>Δ</mi><mi>u</mi><mo>=</mo><mi>f</mi></math></span> and its parabolic counterpart <span><math><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>u</mi><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>=</mo><mi>f</mi></math></span>. Our proof is an adaptation of a contradiction and compactness argument that so far had been only used to prove estimates in Hölder spaces. This new approach is simpler than previous ones, and avoids the use of any interpolation theorem.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"441 \",\"pages\":\"Article 113478\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625005054\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625005054","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在这篇文章中,我们提供了一个关于拉普拉斯函数的W2,p Calderón-Zygmund正则性估计的新证明,即Δu=f和它的抛物线对应的∂tu−Δu=f。我们的证明是一个矛盾性和紧性论证的改编,到目前为止,这个论证只被用来证明Hölder空间中的估计。这种新方法比以前的方法更简单,并且避免了使用任何插值定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lp estimates for the Laplacian via blow-up
In this note we provide a new proof of the W2,p Calderón-Zygmund regularity estimates for the Laplacian, i.e., Δu=f and its parabolic counterpart tuΔu=f. Our proof is an adaptation of a contradiction and compactness argument that so far had been only used to prove estimates in Hölder spaces. This new approach is simpler than previous ones, and avoids the use of any interpolation theorem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信