{"title":"通过爆炸估计拉普拉斯的Lp值","authors":"Jan Lewenstein-Sanpera , Xavier Ros-Oton","doi":"10.1016/j.jde.2025.113478","DOIUrl":null,"url":null,"abstract":"<div><div>In this note we provide a new proof of the <span><math><msup><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>p</mi></mrow></msup></math></span> <em>Calderón-Zygmund</em> regularity estimates for the Laplacian, i.e., <span><math><mi>Δ</mi><mi>u</mi><mo>=</mo><mi>f</mi></math></span> and its parabolic counterpart <span><math><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>u</mi><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>=</mo><mi>f</mi></math></span>. Our proof is an adaptation of a contradiction and compactness argument that so far had been only used to prove estimates in Hölder spaces. This new approach is simpler than previous ones, and avoids the use of any interpolation theorem.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"441 ","pages":"Article 113478"},"PeriodicalIF":2.3000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lp estimates for the Laplacian via blow-up\",\"authors\":\"Jan Lewenstein-Sanpera , Xavier Ros-Oton\",\"doi\":\"10.1016/j.jde.2025.113478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this note we provide a new proof of the <span><math><msup><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>p</mi></mrow></msup></math></span> <em>Calderón-Zygmund</em> regularity estimates for the Laplacian, i.e., <span><math><mi>Δ</mi><mi>u</mi><mo>=</mo><mi>f</mi></math></span> and its parabolic counterpart <span><math><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>u</mi><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>=</mo><mi>f</mi></math></span>. Our proof is an adaptation of a contradiction and compactness argument that so far had been only used to prove estimates in Hölder spaces. This new approach is simpler than previous ones, and avoids the use of any interpolation theorem.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"441 \",\"pages\":\"Article 113478\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625005054\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625005054","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
In this note we provide a new proof of the Calderón-Zygmund regularity estimates for the Laplacian, i.e., and its parabolic counterpart . Our proof is an adaptation of a contradiction and compactness argument that so far had been only used to prove estimates in Hölder spaces. This new approach is simpler than previous ones, and avoids the use of any interpolation theorem.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics