磁微极流体运动方程平稳解的新刘维尔型定理

IF 2.3 2区 数学 Q1 MATHEMATICS
Youseung Cho , Jiří Neustupa , Minsuk Yang
{"title":"磁微极流体运动方程平稳解的新刘维尔型定理","authors":"Youseung Cho ,&nbsp;Jiří Neustupa ,&nbsp;Minsuk Yang","doi":"10.1016/j.jde.2025.113488","DOIUrl":null,"url":null,"abstract":"<div><div>We establish new Liouville-type theorems for smooth stationary solutions of the system of equations governing the motion of a magneto-micropolar fluid in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>. <span><span>Theorem 1</span></span> imposes conditions on the growth of the averaged oscillations of the potentials of the velocity <strong>u</strong>, the angular rotation <strong>w</strong> of fluid particles, and the magnetic field <strong>b</strong>. <span><span>Theorem 2</span></span> imposes conditions on the rate of spatial growth of <strong>u</strong>, <strong>w</strong>, and <strong>b</strong>. As a direct consequence of <span><span>Theorem 2</span></span>, we obtain <span><span>Theorem 3</span></span>, where we assume that <strong>u</strong>, <strong>w</strong>, and <strong>b</strong> are integrable over <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> with exponents satisfying relatively weak restrictions.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"441 ","pages":"Article 113488"},"PeriodicalIF":2.3000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Liouville-type theorems for stationary solutions of the equations of motion of a magneto-micropolar fluid\",\"authors\":\"Youseung Cho ,&nbsp;Jiří Neustupa ,&nbsp;Minsuk Yang\",\"doi\":\"10.1016/j.jde.2025.113488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We establish new Liouville-type theorems for smooth stationary solutions of the system of equations governing the motion of a magneto-micropolar fluid in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>. <span><span>Theorem 1</span></span> imposes conditions on the growth of the averaged oscillations of the potentials of the velocity <strong>u</strong>, the angular rotation <strong>w</strong> of fluid particles, and the magnetic field <strong>b</strong>. <span><span>Theorem 2</span></span> imposes conditions on the rate of spatial growth of <strong>u</strong>, <strong>w</strong>, and <strong>b</strong>. As a direct consequence of <span><span>Theorem 2</span></span>, we obtain <span><span>Theorem 3</span></span>, where we assume that <strong>u</strong>, <strong>w</strong>, and <strong>b</strong> are integrable over <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> with exponents satisfying relatively weak restrictions.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"441 \",\"pages\":\"Article 113488\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625005157\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625005157","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们建立了磁微极流体在R3中运动的方程组的光滑平稳解的新的liouville型定理。定理1对速度u、流体粒子的角旋转w和磁场b的势的平均振荡的增长施加了条件。定理2对u、w和b的空间增长率施加了条件。作为定理2的直接结果,我们得到定理3,其中我们假设u、w和b在R3上可积,其指数满足相对较弱的限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New Liouville-type theorems for stationary solutions of the equations of motion of a magneto-micropolar fluid
We establish new Liouville-type theorems for smooth stationary solutions of the system of equations governing the motion of a magneto-micropolar fluid in R3. Theorem 1 imposes conditions on the growth of the averaged oscillations of the potentials of the velocity u, the angular rotation w of fluid particles, and the magnetic field b. Theorem 2 imposes conditions on the rate of spatial growth of u, w, and b. As a direct consequence of Theorem 2, we obtain Theorem 3, where we assume that u, w, and b are integrable over R3 with exponents satisfying relatively weak restrictions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信