{"title":"非齐次混合边界条件下规定平均曲率方程的正解","authors":"Franco Obersnel, Pierpaolo Omari","doi":"10.1016/j.jde.2025.113462","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate existence, non-existence, multiplicity, stability, and regularity issues for the positive bounded variation solutions of the prescribed mean curvature equation with non-zero mixed, Dirichlet-Neumann, boundary data,<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mo>−</mo><mrow><mi>div</mi></mrow><mo>(</mo><mi>∇</mi><mi>u</mi><mo>/</mo><msqrt><mrow><mn>1</mn><mo>+</mo><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow></msqrt><mo>)</mo><mo>=</mo><mi>λ</mi><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo><mi>h</mi><mo>(</mo><mi>u</mi><mo>)</mo><mspace></mspace></mtd><mtd><mrow><mspace></mspace><mtext> in </mtext><mi>Ω</mi></mrow><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo>=</mo><mi>φ</mi><mspace></mspace></mtd><mtd><mrow><mspace></mspace><mtext> on </mtext><msub><mrow><mo>∂</mo></mrow><mrow><mi>D</mi></mrow></msub><mi>Ω</mi></mrow><mo>,</mo></mtd></mtr><mtr><mtd><mo>−</mo><mi>∇</mi><mi>u</mi><mspace></mspace><msub><mrow><mi>ν</mi></mrow><mrow><mo>∂</mo><mi>Ω</mi></mrow></msub><mo>/</mo><msqrt><mrow><mn>1</mn><mo>+</mo><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow></msqrt><mo>=</mo><mi>ψ</mi><mspace></mspace></mtd><mtd><mrow><mspace></mspace><mtext> on </mtext><msub><mrow><mo>∂</mo></mrow><mrow><mi>N</mi></mrow></msub><mi>Ω</mi></mrow><mo>.</mo></mtd></mtr></mtable></mrow></math></span></span></span> Here, Ω is a bounded domain in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> with a <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msup></math></span> boundary ∂Ω and unit outer normal <span><math><msub><mrow><mi>ν</mi></mrow><mrow><mi>Ω</mi></mrow></msub></math></span> such that <span><math><mo>∂</mo><mi>Ω</mi><mo>=</mo><msub><mrow><mo>∂</mo></mrow><mrow><mi>D</mi></mrow></msub><mi>Ω</mi><mo>∪</mo><msub><mrow><mo>∂</mo></mrow><mrow><mi>N</mi></mrow></msub><mi>Ω</mi></math></span>, <span><math><msub><mrow><mo>∂</mo></mrow><mrow><mi>D</mi></mrow></msub><mi>Ω</mi><mo>≠</mo><mo>∅</mo></math></span>, and <span><math><msub><mrow><mo>∂</mo></mrow><mrow><mi>D</mi></mrow></msub><mi>Ω</mi><mo>∩</mo><msub><mrow><mo>∂</mo></mrow><mrow><mi>N</mi></mrow></msub><mi>Ω</mi><mo>=</mo><mo>∅</mo></math></span>, <span><math><mi>g</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span>, <span><math><mi>h</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msup><mo>(</mo><mo>[</mo><mn>0</mn><mo>,</mo><mo>+</mo><mo>∞</mo><mo>)</mo><mo>)</mo></math></span>, <span><math><mi>φ</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mo>∂</mo><msub><mrow><mi>Ω</mi></mrow><mrow><mi>D</mi></mrow></msub><mo>)</mo></math></span>, <span><math><mo>−</mo><mi>ψ</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><mo>∂</mo><msub><mrow><mi>Ω</mi></mrow><mrow><mi>N</mi></mrow></msub><mo>)</mo></math></span> are positive functions, and <span><math><mi>λ</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mo>+</mo><mo>∞</mo><mo>)</mo></math></span> is a parameter. All results, about existence and multiplicity in particular, are obtained without growth restritions on the function <em>h</em> being imposed.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"441 ","pages":"Article 113462"},"PeriodicalIF":2.3000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Positive solutions of the prescribed mean curvature equation with non-homogeneous mixed boundary conditions\",\"authors\":\"Franco Obersnel, Pierpaolo Omari\",\"doi\":\"10.1016/j.jde.2025.113462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We investigate existence, non-existence, multiplicity, stability, and regularity issues for the positive bounded variation solutions of the prescribed mean curvature equation with non-zero mixed, Dirichlet-Neumann, boundary data,<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mo>−</mo><mrow><mi>div</mi></mrow><mo>(</mo><mi>∇</mi><mi>u</mi><mo>/</mo><msqrt><mrow><mn>1</mn><mo>+</mo><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow></msqrt><mo>)</mo><mo>=</mo><mi>λ</mi><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo><mi>h</mi><mo>(</mo><mi>u</mi><mo>)</mo><mspace></mspace></mtd><mtd><mrow><mspace></mspace><mtext> in </mtext><mi>Ω</mi></mrow><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo>=</mo><mi>φ</mi><mspace></mspace></mtd><mtd><mrow><mspace></mspace><mtext> on </mtext><msub><mrow><mo>∂</mo></mrow><mrow><mi>D</mi></mrow></msub><mi>Ω</mi></mrow><mo>,</mo></mtd></mtr><mtr><mtd><mo>−</mo><mi>∇</mi><mi>u</mi><mspace></mspace><msub><mrow><mi>ν</mi></mrow><mrow><mo>∂</mo><mi>Ω</mi></mrow></msub><mo>/</mo><msqrt><mrow><mn>1</mn><mo>+</mo><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow></msqrt><mo>=</mo><mi>ψ</mi><mspace></mspace></mtd><mtd><mrow><mspace></mspace><mtext> on </mtext><msub><mrow><mo>∂</mo></mrow><mrow><mi>N</mi></mrow></msub><mi>Ω</mi></mrow><mo>.</mo></mtd></mtr></mtable></mrow></math></span></span></span> Here, Ω is a bounded domain in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> with a <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msup></math></span> boundary ∂Ω and unit outer normal <span><math><msub><mrow><mi>ν</mi></mrow><mrow><mi>Ω</mi></mrow></msub></math></span> such that <span><math><mo>∂</mo><mi>Ω</mi><mo>=</mo><msub><mrow><mo>∂</mo></mrow><mrow><mi>D</mi></mrow></msub><mi>Ω</mi><mo>∪</mo><msub><mrow><mo>∂</mo></mrow><mrow><mi>N</mi></mrow></msub><mi>Ω</mi></math></span>, <span><math><msub><mrow><mo>∂</mo></mrow><mrow><mi>D</mi></mrow></msub><mi>Ω</mi><mo>≠</mo><mo>∅</mo></math></span>, and <span><math><msub><mrow><mo>∂</mo></mrow><mrow><mi>D</mi></mrow></msub><mi>Ω</mi><mo>∩</mo><msub><mrow><mo>∂</mo></mrow><mrow><mi>N</mi></mrow></msub><mi>Ω</mi><mo>=</mo><mo>∅</mo></math></span>, <span><math><mi>g</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span>, <span><math><mi>h</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msup><mo>(</mo><mo>[</mo><mn>0</mn><mo>,</mo><mo>+</mo><mo>∞</mo><mo>)</mo><mo>)</mo></math></span>, <span><math><mi>φ</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mo>∂</mo><msub><mrow><mi>Ω</mi></mrow><mrow><mi>D</mi></mrow></msub><mo>)</mo></math></span>, <span><math><mo>−</mo><mi>ψ</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><mo>∂</mo><msub><mrow><mi>Ω</mi></mrow><mrow><mi>N</mi></mrow></msub><mo>)</mo></math></span> are positive functions, and <span><math><mi>λ</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mo>+</mo><mo>∞</mo><mo>)</mo></math></span> is a parameter. All results, about existence and multiplicity in particular, are obtained without growth restritions on the function <em>h</em> being imposed.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"441 \",\"pages\":\"Article 113462\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625004899\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625004899","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Positive solutions of the prescribed mean curvature equation with non-homogeneous mixed boundary conditions
We investigate existence, non-existence, multiplicity, stability, and regularity issues for the positive bounded variation solutions of the prescribed mean curvature equation with non-zero mixed, Dirichlet-Neumann, boundary data, Here, Ω is a bounded domain in with a boundary ∂Ω and unit outer normal such that , , and , , , , are positive functions, and is a parameter. All results, about existence and multiplicity in particular, are obtained without growth restritions on the function h being imposed.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics