非齐次混合边界条件下规定平均曲率方程的正解

IF 2.3 2区 数学 Q1 MATHEMATICS
Franco Obersnel, Pierpaolo Omari
{"title":"非齐次混合边界条件下规定平均曲率方程的正解","authors":"Franco Obersnel,&nbsp;Pierpaolo Omari","doi":"10.1016/j.jde.2025.113462","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate existence, non-existence, multiplicity, stability, and regularity issues for the positive bounded variation solutions of the prescribed mean curvature equation with non-zero mixed, Dirichlet-Neumann, boundary data,<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mo>−</mo><mrow><mi>div</mi></mrow><mo>(</mo><mi>∇</mi><mi>u</mi><mo>/</mo><msqrt><mrow><mn>1</mn><mo>+</mo><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow></msqrt><mo>)</mo><mo>=</mo><mi>λ</mi><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo><mi>h</mi><mo>(</mo><mi>u</mi><mo>)</mo><mspace></mspace></mtd><mtd><mrow><mspace></mspace><mtext> in </mtext><mi>Ω</mi></mrow><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo>=</mo><mi>φ</mi><mspace></mspace></mtd><mtd><mrow><mspace></mspace><mtext> on </mtext><msub><mrow><mo>∂</mo></mrow><mrow><mi>D</mi></mrow></msub><mi>Ω</mi></mrow><mo>,</mo></mtd></mtr><mtr><mtd><mo>−</mo><mi>∇</mi><mi>u</mi><mspace></mspace><msub><mrow><mi>ν</mi></mrow><mrow><mo>∂</mo><mi>Ω</mi></mrow></msub><mo>/</mo><msqrt><mrow><mn>1</mn><mo>+</mo><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow></msqrt><mo>=</mo><mi>ψ</mi><mspace></mspace></mtd><mtd><mrow><mspace></mspace><mtext> on </mtext><msub><mrow><mo>∂</mo></mrow><mrow><mi>N</mi></mrow></msub><mi>Ω</mi></mrow><mo>.</mo></mtd></mtr></mtable></mrow></math></span></span></span> Here, Ω is a bounded domain in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> with a <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msup></math></span> boundary ∂Ω and unit outer normal <span><math><msub><mrow><mi>ν</mi></mrow><mrow><mi>Ω</mi></mrow></msub></math></span> such that <span><math><mo>∂</mo><mi>Ω</mi><mo>=</mo><msub><mrow><mo>∂</mo></mrow><mrow><mi>D</mi></mrow></msub><mi>Ω</mi><mo>∪</mo><msub><mrow><mo>∂</mo></mrow><mrow><mi>N</mi></mrow></msub><mi>Ω</mi></math></span>, <span><math><msub><mrow><mo>∂</mo></mrow><mrow><mi>D</mi></mrow></msub><mi>Ω</mi><mo>≠</mo><mo>∅</mo></math></span>, and <span><math><msub><mrow><mo>∂</mo></mrow><mrow><mi>D</mi></mrow></msub><mi>Ω</mi><mo>∩</mo><msub><mrow><mo>∂</mo></mrow><mrow><mi>N</mi></mrow></msub><mi>Ω</mi><mo>=</mo><mo>∅</mo></math></span>, <span><math><mi>g</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span>, <span><math><mi>h</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msup><mo>(</mo><mo>[</mo><mn>0</mn><mo>,</mo><mo>+</mo><mo>∞</mo><mo>)</mo><mo>)</mo></math></span>, <span><math><mi>φ</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mo>∂</mo><msub><mrow><mi>Ω</mi></mrow><mrow><mi>D</mi></mrow></msub><mo>)</mo></math></span>, <span><math><mo>−</mo><mi>ψ</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><mo>∂</mo><msub><mrow><mi>Ω</mi></mrow><mrow><mi>N</mi></mrow></msub><mo>)</mo></math></span> are positive functions, and <span><math><mi>λ</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mo>+</mo><mo>∞</mo><mo>)</mo></math></span> is a parameter. All results, about existence and multiplicity in particular, are obtained without growth restritions on the function <em>h</em> being imposed.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"441 ","pages":"Article 113462"},"PeriodicalIF":2.3000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Positive solutions of the prescribed mean curvature equation with non-homogeneous mixed boundary conditions\",\"authors\":\"Franco Obersnel,&nbsp;Pierpaolo Omari\",\"doi\":\"10.1016/j.jde.2025.113462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We investigate existence, non-existence, multiplicity, stability, and regularity issues for the positive bounded variation solutions of the prescribed mean curvature equation with non-zero mixed, Dirichlet-Neumann, boundary data,<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mo>−</mo><mrow><mi>div</mi></mrow><mo>(</mo><mi>∇</mi><mi>u</mi><mo>/</mo><msqrt><mrow><mn>1</mn><mo>+</mo><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow></msqrt><mo>)</mo><mo>=</mo><mi>λ</mi><mi>g</mi><mo>(</mo><mi>x</mi><mo>)</mo><mi>h</mi><mo>(</mo><mi>u</mi><mo>)</mo><mspace></mspace></mtd><mtd><mrow><mspace></mspace><mtext> in </mtext><mi>Ω</mi></mrow><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo>=</mo><mi>φ</mi><mspace></mspace></mtd><mtd><mrow><mspace></mspace><mtext> on </mtext><msub><mrow><mo>∂</mo></mrow><mrow><mi>D</mi></mrow></msub><mi>Ω</mi></mrow><mo>,</mo></mtd></mtr><mtr><mtd><mo>−</mo><mi>∇</mi><mi>u</mi><mspace></mspace><msub><mrow><mi>ν</mi></mrow><mrow><mo>∂</mo><mi>Ω</mi></mrow></msub><mo>/</mo><msqrt><mrow><mn>1</mn><mo>+</mo><mo>|</mo><mi>∇</mi><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow></msqrt><mo>=</mo><mi>ψ</mi><mspace></mspace></mtd><mtd><mrow><mspace></mspace><mtext> on </mtext><msub><mrow><mo>∂</mo></mrow><mrow><mi>N</mi></mrow></msub><mi>Ω</mi></mrow><mo>.</mo></mtd></mtr></mtable></mrow></math></span></span></span> Here, Ω is a bounded domain in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> with a <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></msup></math></span> boundary ∂Ω and unit outer normal <span><math><msub><mrow><mi>ν</mi></mrow><mrow><mi>Ω</mi></mrow></msub></math></span> such that <span><math><mo>∂</mo><mi>Ω</mi><mo>=</mo><msub><mrow><mo>∂</mo></mrow><mrow><mi>D</mi></mrow></msub><mi>Ω</mi><mo>∪</mo><msub><mrow><mo>∂</mo></mrow><mrow><mi>N</mi></mrow></msub><mi>Ω</mi></math></span>, <span><math><msub><mrow><mo>∂</mo></mrow><mrow><mi>D</mi></mrow></msub><mi>Ω</mi><mo>≠</mo><mo>∅</mo></math></span>, and <span><math><msub><mrow><mo>∂</mo></mrow><mrow><mi>D</mi></mrow></msub><mi>Ω</mi><mo>∩</mo><msub><mrow><mo>∂</mo></mrow><mrow><mi>N</mi></mrow></msub><mi>Ω</mi><mo>=</mo><mo>∅</mo></math></span>, <span><math><mi>g</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span>, <span><math><mi>h</mi><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msup><mo>(</mo><mo>[</mo><mn>0</mn><mo>,</mo><mo>+</mo><mo>∞</mo><mo>)</mo><mo>)</mo></math></span>, <span><math><mi>φ</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mo>∂</mo><msub><mrow><mi>Ω</mi></mrow><mrow><mi>D</mi></mrow></msub><mo>)</mo></math></span>, <span><math><mo>−</mo><mi>ψ</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><mo>∂</mo><msub><mrow><mi>Ω</mi></mrow><mrow><mi>N</mi></mrow></msub><mo>)</mo></math></span> are positive functions, and <span><math><mi>λ</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mo>+</mo><mo>∞</mo><mo>)</mo></math></span> is a parameter. All results, about existence and multiplicity in particular, are obtained without growth restritions on the function <em>h</em> being imposed.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"441 \",\"pages\":\"Article 113462\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625004899\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625004899","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了具有非零混合Dirichlet-Neumann边界数据的规定平均曲率方程的正有界变分解的存在性、不存在性、多样性、稳定性和正则性问题,在Ω中,{−div(∇u/1+|∇u|2)=λg(x)h(u),在∂DΩ中,u=φ,在∂NΩ中,−∇uν∂Ω/1+|∇u|2=ψ。Ω是有限域在RN C0, 1边界∂Ω和单元外正常νΩ,∂Ω=∂DΩ∪∂NΩ,∂DΩ≠∅,∂DΩ∩∂NΩ=∅,g∈LN(Ω),h∈C0([0, +∞)),φ∈L1(∂ΩD),−ψ∈L∞(∂ΩN)是积极的功能,和λ∈(0,+∞)是一个参数。所有的结果,特别是关于存在性和多重性的结果,都是在没有对函数h施加生长限制的情况下得到的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Positive solutions of the prescribed mean curvature equation with non-homogeneous mixed boundary conditions
We investigate existence, non-existence, multiplicity, stability, and regularity issues for the positive bounded variation solutions of the prescribed mean curvature equation with non-zero mixed, Dirichlet-Neumann, boundary data,{div(u/1+|u|2)=λg(x)h(u) in Ω,u=φ on DΩ,uνΩ/1+|u|2=ψ on NΩ. Here, Ω is a bounded domain in RN with a C0,1 boundary ∂Ω and unit outer normal νΩ such that Ω=DΩNΩ, DΩ, and DΩNΩ=, gLN(Ω), hC0([0,+)), φL1(ΩD), ψL(ΩN) are positive functions, and λ[0,+) is a parameter. All results, about existence and multiplicity in particular, are obtained without growth restritions on the function h being imposed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信