{"title":"四个新和图的零阶一般randiki指数","authors":"Rauf Irshad , Suha Wazzan","doi":"10.1016/j.asej.2025.103521","DOIUrl":null,"url":null,"abstract":"<div><div>For molecular graphs, the topological indices (TIs) proved to be a bridge between graph theory and mathematical chemistry to understand and predict certain properties of underlying chemical substances. In chemical graph theory (CGT), for a (molecular) graph Γ, zeroth-order general Randić index is considered to be a prominent and comprehensive topological index represented as <span><math><mmultiscripts><mrow><mi>R</mi></mrow><mrow><mi>α</mi></mrow><none></none><mprescripts></mprescripts><none></none><mrow><mn>0</mn></mrow></mmultiscripts><mo>(</mo><mo>(</mo><mi>Γ</mi><mo>)</mo><mo>)</mo></math></span>. Many prominent and useful indices are special cases of <span><math><mmultiscripts><mrow><mi>R</mi></mrow><mrow><mi>α</mi></mrow><none></none><mprescripts></mprescripts><none></none><mrow><mn>0</mn></mrow></mmultiscripts><mo>(</mo><mi>Γ</mi><mo>)</mo></math></span>. For instance, for <span><math><mi>α</mi><mo>=</mo><mo>−</mo><mn>1</mn></math></span>, <span><math><mfrac><mrow><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>, 2, and 3 we get inverse degree index (IDI) or modified total adjacency index, zeroth order Randić index <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mn>1</mn></mrow><mrow><mfrac><mrow><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msubsup><mo>(</mo><mi>Γ</mi><mo>)</mo></math></span>, first Zagreb index <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>Γ</mi><mo>)</mo></math></span>, and forgotten index <span><math><mi>F</mi><mo>(</mo><mi>Γ</mi><mo>)</mo></math></span>, respectively. The TI <span><math><mmultiscripts><mrow><mi>R</mi></mrow><mrow><mi>α</mi></mrow><none></none><mprescripts></mprescripts><none></none><mrow><mn>0</mn></mrow></mmultiscripts><mo>(</mo><mi>Γ</mi><mo>)</mo></math></span> has a myriad of applications in chemistry, such as estimating the structural dependence of alternant hydrocarbons on the <em>π</em>-electron energy. In CGT, graph products provide a framework for generating new (molecular) graphs of our choice by combining two graphs under a specific binary operation. Adequate research has been conducted on numerous TIs, including <span><math><mmultiscripts><mrow><mi>R</mi></mrow><mrow><mi>α</mi></mrow><none></none><mprescripts></mprescripts><none></none><mrow><mn>0</mn></mrow></mmultiscripts><mo>(</mo><mo>(</mo><mi>Γ</mi><mo>)</mo><mo>)</mo></math></span>, for F-sum graphs under the Cartesian product. In this paper, we derived the exact formulas of the <span><math><mmultiscripts><mrow><mi>R</mi></mrow><mrow><mi>α</mi></mrow><none></none><mprescripts></mprescripts><none></none><mrow><mn>0</mn></mrow></mmultiscripts><mo>(</mo><mi>Γ</mi><mo>)</mo></math></span> for newly defined F-sum graphs based on the tensor product. We prove the accuracy and validity of our formulas by taking diverse pertinent examples. Researchers from cheminformatics can use our formulas of zeroth-order general Randić index for QSAR/QSPR studies in the design and analysis of new molecules. In addition, we provided closed-form formulas of <span><math><mmultiscripts><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow><none></none><mprescripts></mprescripts><none></none><mrow><mn>0</mn></mrow></mmultiscripts><mo>(</mo><mi>Γ</mi><mo>)</mo></math></span> (F-index) for some general families of graphs using our results.</div></div>","PeriodicalId":48648,"journal":{"name":"Ain Shams Engineering Journal","volume":"16 9","pages":"Article 103521"},"PeriodicalIF":5.9000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zeroth-order general Randić index for four new sum-graphs\",\"authors\":\"Rauf Irshad , Suha Wazzan\",\"doi\":\"10.1016/j.asej.2025.103521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For molecular graphs, the topological indices (TIs) proved to be a bridge between graph theory and mathematical chemistry to understand and predict certain properties of underlying chemical substances. In chemical graph theory (CGT), for a (molecular) graph Γ, zeroth-order general Randić index is considered to be a prominent and comprehensive topological index represented as <span><math><mmultiscripts><mrow><mi>R</mi></mrow><mrow><mi>α</mi></mrow><none></none><mprescripts></mprescripts><none></none><mrow><mn>0</mn></mrow></mmultiscripts><mo>(</mo><mo>(</mo><mi>Γ</mi><mo>)</mo><mo>)</mo></math></span>. Many prominent and useful indices are special cases of <span><math><mmultiscripts><mrow><mi>R</mi></mrow><mrow><mi>α</mi></mrow><none></none><mprescripts></mprescripts><none></none><mrow><mn>0</mn></mrow></mmultiscripts><mo>(</mo><mi>Γ</mi><mo>)</mo></math></span>. For instance, for <span><math><mi>α</mi><mo>=</mo><mo>−</mo><mn>1</mn></math></span>, <span><math><mfrac><mrow><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>, 2, and 3 we get inverse degree index (IDI) or modified total adjacency index, zeroth order Randić index <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mn>1</mn></mrow><mrow><mfrac><mrow><mo>−</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msubsup><mo>(</mo><mi>Γ</mi><mo>)</mo></math></span>, first Zagreb index <span><math><msub><mrow><mi>M</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>Γ</mi><mo>)</mo></math></span>, and forgotten index <span><math><mi>F</mi><mo>(</mo><mi>Γ</mi><mo>)</mo></math></span>, respectively. The TI <span><math><mmultiscripts><mrow><mi>R</mi></mrow><mrow><mi>α</mi></mrow><none></none><mprescripts></mprescripts><none></none><mrow><mn>0</mn></mrow></mmultiscripts><mo>(</mo><mi>Γ</mi><mo>)</mo></math></span> has a myriad of applications in chemistry, such as estimating the structural dependence of alternant hydrocarbons on the <em>π</em>-electron energy. In CGT, graph products provide a framework for generating new (molecular) graphs of our choice by combining two graphs under a specific binary operation. Adequate research has been conducted on numerous TIs, including <span><math><mmultiscripts><mrow><mi>R</mi></mrow><mrow><mi>α</mi></mrow><none></none><mprescripts></mprescripts><none></none><mrow><mn>0</mn></mrow></mmultiscripts><mo>(</mo><mo>(</mo><mi>Γ</mi><mo>)</mo><mo>)</mo></math></span>, for F-sum graphs under the Cartesian product. In this paper, we derived the exact formulas of the <span><math><mmultiscripts><mrow><mi>R</mi></mrow><mrow><mi>α</mi></mrow><none></none><mprescripts></mprescripts><none></none><mrow><mn>0</mn></mrow></mmultiscripts><mo>(</mo><mi>Γ</mi><mo>)</mo></math></span> for newly defined F-sum graphs based on the tensor product. We prove the accuracy and validity of our formulas by taking diverse pertinent examples. Researchers from cheminformatics can use our formulas of zeroth-order general Randić index for QSAR/QSPR studies in the design and analysis of new molecules. In addition, we provided closed-form formulas of <span><math><mmultiscripts><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow><none></none><mprescripts></mprescripts><none></none><mrow><mn>0</mn></mrow></mmultiscripts><mo>(</mo><mi>Γ</mi><mo>)</mo></math></span> (F-index) for some general families of graphs using our results.</div></div>\",\"PeriodicalId\":48648,\"journal\":{\"name\":\"Ain Shams Engineering Journal\",\"volume\":\"16 9\",\"pages\":\"Article 103521\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ain Shams Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S209044792500262X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ain Shams Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S209044792500262X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Zeroth-order general Randić index for four new sum-graphs
For molecular graphs, the topological indices (TIs) proved to be a bridge between graph theory and mathematical chemistry to understand and predict certain properties of underlying chemical substances. In chemical graph theory (CGT), for a (molecular) graph Γ, zeroth-order general Randić index is considered to be a prominent and comprehensive topological index represented as . Many prominent and useful indices are special cases of . For instance, for , , 2, and 3 we get inverse degree index (IDI) or modified total adjacency index, zeroth order Randić index , first Zagreb index , and forgotten index , respectively. The TI has a myriad of applications in chemistry, such as estimating the structural dependence of alternant hydrocarbons on the π-electron energy. In CGT, graph products provide a framework for generating new (molecular) graphs of our choice by combining two graphs under a specific binary operation. Adequate research has been conducted on numerous TIs, including , for F-sum graphs under the Cartesian product. In this paper, we derived the exact formulas of the for newly defined F-sum graphs based on the tensor product. We prove the accuracy and validity of our formulas by taking diverse pertinent examples. Researchers from cheminformatics can use our formulas of zeroth-order general Randić index for QSAR/QSPR studies in the design and analysis of new molecules. In addition, we provided closed-form formulas of (F-index) for some general families of graphs using our results.
期刊介绍:
in Shams Engineering Journal is an international journal devoted to publication of peer reviewed original high-quality research papers and review papers in both traditional topics and those of emerging science and technology. Areas of both theoretical and fundamental interest as well as those concerning industrial applications, emerging instrumental techniques and those which have some practical application to an aspect of human endeavor, such as the preservation of the environment, health, waste disposal are welcome. The overall focus is on original and rigorous scientific research results which have generic significance.
Ain Shams Engineering Journal focuses upon aspects of mechanical engineering, electrical engineering, civil engineering, chemical engineering, petroleum engineering, environmental engineering, architectural and urban planning engineering. Papers in which knowledge from other disciplines is integrated with engineering are especially welcome like nanotechnology, material sciences, and computational methods as well as applied basic sciences: engineering mathematics, physics and chemistry.