负责骨重塑的蛋白质和多肽

IF 2.2 3区 生物学 Q4 CELL BIOLOGY
Jorge Alejandro Barbosa-Nuñez , José Nabor Haro-González , Eristeo García-Márquez , Hugo Espinosa-Andrews , Eduardo Padilla-Camberos , Sara Elisa Herrera-Rodríguez
{"title":"负责骨重塑的蛋白质和多肽","authors":"Jorge Alejandro Barbosa-Nuñez ,&nbsp;José Nabor Haro-González ,&nbsp;Eristeo García-Márquez ,&nbsp;Hugo Espinosa-Andrews ,&nbsp;Eduardo Padilla-Camberos ,&nbsp;Sara Elisa Herrera-Rodríguez","doi":"10.1016/j.diff.2025.100872","DOIUrl":null,"url":null,"abstract":"<div><div>Bones are living tissues that are periodically renewed through the bone remodeling process. It starts when monocyte-macrophage-type cells begin to proliferate and recruit into the bone tissue due to the action of various proteins. The proteins are generated by the body in response to a lack of calcium in the blood or a damaged bone tissue. Then, other chemical signals promote the differentiation of monocyte-macrophage-type cells into osteoclasts. Finally, osteoclasts carry out a process known as bone resorption in which they degrade bone tissue. After, bone resorption a process known as osteogenesis takes place. In osteogenesis, pluripotent mesenchymal stem cells proliferate and recruit in the bone damaged by bone resorption in response to the action of different compounds. Then, pluripotent mesenchymal stem cells differentiate into osteoblasts due to the effect of specific proteins. Finally, osteoblasts generate new bone tissue, completing the bone remodeling process. This review aims to summarize and provide recent findings of the proteins and chemical signals involved in osteoclast and osteoblast proliferation, recruitment and maturation during the bone resorption and osteogenesis processes. The information found about these molecules could help to better understand all the complex mechanisms that directly or indirectly influence the bone remodeling process. In this sense, the mechanisms of different bone disorders and diseases could be elucidated in a better way, leading to the generation of efficient and specific treatments for each of them in the future.</div></div>","PeriodicalId":50579,"journal":{"name":"Differentiation","volume":"144 ","pages":"Article 100872"},"PeriodicalIF":2.2000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proteins and peptides responsible for bone remodeling\",\"authors\":\"Jorge Alejandro Barbosa-Nuñez ,&nbsp;José Nabor Haro-González ,&nbsp;Eristeo García-Márquez ,&nbsp;Hugo Espinosa-Andrews ,&nbsp;Eduardo Padilla-Camberos ,&nbsp;Sara Elisa Herrera-Rodríguez\",\"doi\":\"10.1016/j.diff.2025.100872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Bones are living tissues that are periodically renewed through the bone remodeling process. It starts when monocyte-macrophage-type cells begin to proliferate and recruit into the bone tissue due to the action of various proteins. The proteins are generated by the body in response to a lack of calcium in the blood or a damaged bone tissue. Then, other chemical signals promote the differentiation of monocyte-macrophage-type cells into osteoclasts. Finally, osteoclasts carry out a process known as bone resorption in which they degrade bone tissue. After, bone resorption a process known as osteogenesis takes place. In osteogenesis, pluripotent mesenchymal stem cells proliferate and recruit in the bone damaged by bone resorption in response to the action of different compounds. Then, pluripotent mesenchymal stem cells differentiate into osteoblasts due to the effect of specific proteins. Finally, osteoblasts generate new bone tissue, completing the bone remodeling process. This review aims to summarize and provide recent findings of the proteins and chemical signals involved in osteoclast and osteoblast proliferation, recruitment and maturation during the bone resorption and osteogenesis processes. The information found about these molecules could help to better understand all the complex mechanisms that directly or indirectly influence the bone remodeling process. In this sense, the mechanisms of different bone disorders and diseases could be elucidated in a better way, leading to the generation of efficient and specific treatments for each of them in the future.</div></div>\",\"PeriodicalId\":50579,\"journal\":{\"name\":\"Differentiation\",\"volume\":\"144 \",\"pages\":\"Article 100872\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differentiation\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301468125000398\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differentiation","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301468125000398","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

骨骼是活的组织,通过骨骼重塑过程周期性地更新。当单核巨噬细胞型细胞开始增殖并在各种蛋白质的作用下进入骨组织时,它就开始了。这种蛋白质是人体在血液中缺钙或骨组织受损时产生的。然后,其他化学信号促进单核-巨噬细胞型细胞向破骨细胞分化。最后,破骨细胞进行被称为骨吸收的过程,在这个过程中它们降解骨组织。之后,发生骨吸收过程,称为成骨。在成骨过程中,多能间充质干细胞在不同化合物的作用下,在骨吸收损伤的骨中增殖和再生。多能间充质干细胞在特定蛋白的作用下向成骨细胞分化。最后,成骨细胞生成新的骨组织,完成骨重塑过程。本文综述了骨吸收和成骨过程中破骨细胞和成骨细胞增殖、募集和成熟过程中涉及的蛋白质和化学信号的最新发现。发现这些分子的信息有助于更好地理解所有直接或间接影响骨重塑过程的复杂机制。从这个意义上说,可以更好地阐明不同骨紊乱和疾病的机制,从而在未来为每种疾病产生有效和特异性的治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Proteins and peptides responsible for bone remodeling
Bones are living tissues that are periodically renewed through the bone remodeling process. It starts when monocyte-macrophage-type cells begin to proliferate and recruit into the bone tissue due to the action of various proteins. The proteins are generated by the body in response to a lack of calcium in the blood or a damaged bone tissue. Then, other chemical signals promote the differentiation of monocyte-macrophage-type cells into osteoclasts. Finally, osteoclasts carry out a process known as bone resorption in which they degrade bone tissue. After, bone resorption a process known as osteogenesis takes place. In osteogenesis, pluripotent mesenchymal stem cells proliferate and recruit in the bone damaged by bone resorption in response to the action of different compounds. Then, pluripotent mesenchymal stem cells differentiate into osteoblasts due to the effect of specific proteins. Finally, osteoblasts generate new bone tissue, completing the bone remodeling process. This review aims to summarize and provide recent findings of the proteins and chemical signals involved in osteoclast and osteoblast proliferation, recruitment and maturation during the bone resorption and osteogenesis processes. The information found about these molecules could help to better understand all the complex mechanisms that directly or indirectly influence the bone remodeling process. In this sense, the mechanisms of different bone disorders and diseases could be elucidated in a better way, leading to the generation of efficient and specific treatments for each of them in the future.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Differentiation
Differentiation 生物-发育生物学
CiteScore
4.10
自引率
3.40%
发文量
38
审稿时长
51 days
期刊介绍: Differentiation is a multidisciplinary journal dealing with topics relating to cell differentiation, development, cellular structure and function, and cancer. Differentiation of eukaryotes at the molecular level and the use of transgenic and targeted mutagenesis approaches to problems of differentiation are of particular interest to the journal. The journal will publish full-length articles containing original work in any of these areas. We will also publish reviews and commentaries on topics of current interest. The principal subject areas the journal covers are: • embryonic patterning and organogenesis • human development and congenital malformation • mechanisms of cell lineage commitment • tissue homeostasis and oncogenic transformation • establishment of cellular polarity • stem cell differentiation • cell reprogramming mechanisms • stability of the differentiated state • cell and tissue interactions in vivo and in vitro • signal transduction pathways in development and differentiation • carcinogenesis and cancer • mechanisms involved in cell growth and division especially relating to cancer • differentiation in regeneration and ageing • therapeutic applications of differentiation processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信