通过四角切向入口喷射提高微热光伏系统微燃烧室外壁温度均匀性

IF 7.5 1区 工程技术 Q2 ENERGY & FUELS
Fuel Pub Date : 2025-06-02 DOI:10.1016/j.fuel.2025.135849
Yonghong Wu, Yunfei Yan, Chenghua Zhang, Zongguo Xue, Yongbo Li, Yang Hu, Xuelin Zhao
{"title":"通过四角切向入口喷射提高微热光伏系统微燃烧室外壁温度均匀性","authors":"Yonghong Wu,&nbsp;Yunfei Yan,&nbsp;Chenghua Zhang,&nbsp;Zongguo Xue,&nbsp;Yongbo Li,&nbsp;Yang Hu,&nbsp;Xuelin Zhao","doi":"10.1016/j.fuel.2025.135849","DOIUrl":null,"url":null,"abstract":"<div><div>The outer wall temperature uniformity in micro-combustors is crucial for the stability and longevity of micro thermophotovoltaic systems. This study introduces a novel corner tangential micro-combustor (CTMC) to optimize the outer wall temperature distribution. A comparative analysis with a traditional micro-combustor (TMC) demonstrates that the CTMC enhances flame stability and promotes a more uniform temperature field by leveraging the swirl effect induced by four tangential inlets injection. This advancement results in improved combustion efficiency and a more consistent temperature distribution, albeit with a modest increase in pressure loss. Specifically, at a given inlet flow rate of <span><math><mrow><mn>3.5</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>5</mn></mrow></msup><mrow><mspace></mspace><mtext>kg/s</mtext></mrow></mrow></math></span>, the average temperature on the outer wall increases by 47.93 K, the temperature standard deviation decreases by 24.15 K, and the combustion efficiency improves by 1.18 %, while the pressure loss rises by 583.19 Pa. Additionally, the influence of the inlet tangential circle diameter (d) on performance is explored. With increasing d, the flow toward the wall becomes more concentrated, resulting in a more uniform temperature field and reduced pressure loss. Notably, when d increases from 0.4 mm to 1.0 mm, pressure loss decreases by 6105.28 Pa, and the temperature standard deviation decreases by 96.04 K. Further analysis of the CTMC’s performance under varying inlet mass flow rates, revealing that higher flow rates suppress recirculation near the combustor’s front. However, excessively high flow rates lead to expulsion of unreacted fuel, reducing combustion efficiency. Temperature uniformity exhibits a non-linear trend, initially improving with increasing flow rate (from <span><math><mrow><mn>2.5</mn><mo>×</mo><msup><mrow><mtext>10</mtext></mrow><mrow><mspace></mspace><mtext>- 5</mtext></mrow></msup><mrow><mspace></mspace><mtext>kg/s</mtext></mrow></mrow></math></span> to <span><math><mrow><mn>3.5</mn><mo>×</mo><msup><mrow><mtext>10</mtext></mrow><mrow><mspace></mspace><mtext>- 5</mtext></mrow></msup><mrow><mspace></mspace><mtext>kg/s</mtext></mrow></mrow></math></span>) before deteriorating at higher flow rates (from <span><math><mrow><mn>3.5</mn><mo>×</mo><msup><mrow><mtext>10</mtext></mrow><mrow><mspace></mspace><mtext>- 5</mtext></mrow></msup><mrow><mspace></mspace><mtext>kg/s</mtext></mrow></mrow></math></span> to <span><math><mrow><mn>4.5</mn><mo>×</mo><msup><mrow><mtext>10</mtext></mrow><mrow><mspace></mspace><mtext>- 5</mtext></mrow></msup><mrow><mspace></mspace><mtext>kg/s</mtext></mrow></mrow></math></span>), with best case of <span><math><mrow><mn>3.5</mn><mo>×</mo><msup><mrow><mtext>10</mtext></mrow><mrow><mspace></mspace><mtext>- 5</mtext></mrow></msup><mrow><mspace></mspace><mtext>kg/s</mtext></mrow></mrow></math></span> and corresponding TSD of 18.96 K. This research provides new insights into enhancing the temperature distribution in micro-combustors and suggests cost-effective strategies for enhancing combustor design.</div></div>","PeriodicalId":325,"journal":{"name":"Fuel","volume":"401 ","pages":"Article 135849"},"PeriodicalIF":7.5000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing outer wall temperature uniformity in a micro-combustor for micro thermophotovoltaic system via four-corner tangential inlets injection\",\"authors\":\"Yonghong Wu,&nbsp;Yunfei Yan,&nbsp;Chenghua Zhang,&nbsp;Zongguo Xue,&nbsp;Yongbo Li,&nbsp;Yang Hu,&nbsp;Xuelin Zhao\",\"doi\":\"10.1016/j.fuel.2025.135849\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The outer wall temperature uniformity in micro-combustors is crucial for the stability and longevity of micro thermophotovoltaic systems. This study introduces a novel corner tangential micro-combustor (CTMC) to optimize the outer wall temperature distribution. A comparative analysis with a traditional micro-combustor (TMC) demonstrates that the CTMC enhances flame stability and promotes a more uniform temperature field by leveraging the swirl effect induced by four tangential inlets injection. This advancement results in improved combustion efficiency and a more consistent temperature distribution, albeit with a modest increase in pressure loss. Specifically, at a given inlet flow rate of <span><math><mrow><mn>3.5</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>5</mn></mrow></msup><mrow><mspace></mspace><mtext>kg/s</mtext></mrow></mrow></math></span>, the average temperature on the outer wall increases by 47.93 K, the temperature standard deviation decreases by 24.15 K, and the combustion efficiency improves by 1.18 %, while the pressure loss rises by 583.19 Pa. Additionally, the influence of the inlet tangential circle diameter (d) on performance is explored. With increasing d, the flow toward the wall becomes more concentrated, resulting in a more uniform temperature field and reduced pressure loss. Notably, when d increases from 0.4 mm to 1.0 mm, pressure loss decreases by 6105.28 Pa, and the temperature standard deviation decreases by 96.04 K. Further analysis of the CTMC’s performance under varying inlet mass flow rates, revealing that higher flow rates suppress recirculation near the combustor’s front. However, excessively high flow rates lead to expulsion of unreacted fuel, reducing combustion efficiency. Temperature uniformity exhibits a non-linear trend, initially improving with increasing flow rate (from <span><math><mrow><mn>2.5</mn><mo>×</mo><msup><mrow><mtext>10</mtext></mrow><mrow><mspace></mspace><mtext>- 5</mtext></mrow></msup><mrow><mspace></mspace><mtext>kg/s</mtext></mrow></mrow></math></span> to <span><math><mrow><mn>3.5</mn><mo>×</mo><msup><mrow><mtext>10</mtext></mrow><mrow><mspace></mspace><mtext>- 5</mtext></mrow></msup><mrow><mspace></mspace><mtext>kg/s</mtext></mrow></mrow></math></span>) before deteriorating at higher flow rates (from <span><math><mrow><mn>3.5</mn><mo>×</mo><msup><mrow><mtext>10</mtext></mrow><mrow><mspace></mspace><mtext>- 5</mtext></mrow></msup><mrow><mspace></mspace><mtext>kg/s</mtext></mrow></mrow></math></span> to <span><math><mrow><mn>4.5</mn><mo>×</mo><msup><mrow><mtext>10</mtext></mrow><mrow><mspace></mspace><mtext>- 5</mtext></mrow></msup><mrow><mspace></mspace><mtext>kg/s</mtext></mrow></mrow></math></span>), with best case of <span><math><mrow><mn>3.5</mn><mo>×</mo><msup><mrow><mtext>10</mtext></mrow><mrow><mspace></mspace><mtext>- 5</mtext></mrow></msup><mrow><mspace></mspace><mtext>kg/s</mtext></mrow></mrow></math></span> and corresponding TSD of 18.96 K. This research provides new insights into enhancing the temperature distribution in micro-combustors and suggests cost-effective strategies for enhancing combustor design.</div></div>\",\"PeriodicalId\":325,\"journal\":{\"name\":\"Fuel\",\"volume\":\"401 \",\"pages\":\"Article 135849\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuel\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0016236125015741\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016236125015741","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

微燃烧室外壁温度均匀性对微热光伏系统的稳定性和寿命至关重要。为了优化燃烧室外壁温度分布,设计了一种新型的转角切向微燃烧室(CTMC)。与传统微燃烧室(TMC)的对比分析表明,CTMC利用四个切向入口喷射引起的涡流效应提高了火焰稳定性,并促进了更均匀的温度场。这一进步导致了燃烧效率的提高和更一致的温度分布,尽管压力损失略有增加。其中,在进口流速为3.5×10-5kg/s时,外壁平均温度提高47.93 K,温度标准差降低24.15 K,燃烧效率提高1.18%,压力损失增加583.19 Pa。此外,还探讨了进口切圆直径(d)对性能的影响。随着d的增大,流向壁面的流动更加集中,温度场更加均匀,压力损失减小。当d从0.4 mm增大到1.0 mm时,压力损失减小6105.28 Pa,温度标准差减小96.04 K。进一步分析CTMC在不同进口质量流量下的性能,发现较高的流量会抑制燃烧室前部附近的再循环。然而,过高的流量会导致未反应燃料的排出,从而降低燃烧效率。温度均匀性表现为非线性趋势,随着流量的增加(从2.5×10- 5kg/s到3.5×10- 5kg/s),温度均匀性开始改善,在高流量(从3.5×10- 5kg/s到4.5×10- 5kg/s)下,温度均匀性开始恶化,最佳流量为3.5×10- 5kg/s,相应的TSD为18.96 K。该研究为改善微燃烧室温度分布提供了新的思路,并为改进燃烧室设计提供了经济有效的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing outer wall temperature uniformity in a micro-combustor for micro thermophotovoltaic system via four-corner tangential inlets injection
The outer wall temperature uniformity in micro-combustors is crucial for the stability and longevity of micro thermophotovoltaic systems. This study introduces a novel corner tangential micro-combustor (CTMC) to optimize the outer wall temperature distribution. A comparative analysis with a traditional micro-combustor (TMC) demonstrates that the CTMC enhances flame stability and promotes a more uniform temperature field by leveraging the swirl effect induced by four tangential inlets injection. This advancement results in improved combustion efficiency and a more consistent temperature distribution, albeit with a modest increase in pressure loss. Specifically, at a given inlet flow rate of 3.5×10-5kg/s, the average temperature on the outer wall increases by 47.93 K, the temperature standard deviation decreases by 24.15 K, and the combustion efficiency improves by 1.18 %, while the pressure loss rises by 583.19 Pa. Additionally, the influence of the inlet tangential circle diameter (d) on performance is explored. With increasing d, the flow toward the wall becomes more concentrated, resulting in a more uniform temperature field and reduced pressure loss. Notably, when d increases from 0.4 mm to 1.0 mm, pressure loss decreases by 6105.28 Pa, and the temperature standard deviation decreases by 96.04 K. Further analysis of the CTMC’s performance under varying inlet mass flow rates, revealing that higher flow rates suppress recirculation near the combustor’s front. However, excessively high flow rates lead to expulsion of unreacted fuel, reducing combustion efficiency. Temperature uniformity exhibits a non-linear trend, initially improving with increasing flow rate (from 2.5×10- 5kg/s to 3.5×10- 5kg/s) before deteriorating at higher flow rates (from 3.5×10- 5kg/s to 4.5×10- 5kg/s), with best case of 3.5×10- 5kg/s and corresponding TSD of 18.96 K. This research provides new insights into enhancing the temperature distribution in micro-combustors and suggests cost-effective strategies for enhancing combustor design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fuel
Fuel 工程技术-工程:化工
CiteScore
12.80
自引率
20.30%
发文量
3506
审稿时长
64 days
期刊介绍: The exploration of energy sources remains a critical matter of study. For the past nine decades, fuel has consistently held the forefront in primary research efforts within the field of energy science. This area of investigation encompasses a wide range of subjects, with a particular emphasis on emerging concerns like environmental factors and pollution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信