Han Zhang , Shuxin Shi , Lujia Sun , Shuangqu Li , Yan Zhang , Ziyue Li , Jingjing Hou , Pingan Li , Jingshan Shen , Xi Cheng , Shibo Jiang , Zhaobing Gao , Xinling Wang , Xiangrui Jiang , Bingqing Xia
{"title":"抑制SARS-CoV-2包膜(2-E)通道的抗病毒候选药物的筛选和发现","authors":"Han Zhang , Shuxin Shi , Lujia Sun , Shuangqu Li , Yan Zhang , Ziyue Li , Jingjing Hou , Pingan Li , Jingshan Shen , Xi Cheng , Shibo Jiang , Zhaobing Gao , Xinling Wang , Xiangrui Jiang , Bingqing Xia","doi":"10.1016/j.crmicr.2025.100409","DOIUrl":null,"url":null,"abstract":"<div><div>The SARS-CoV-2-encoded 2-E channel is critical in the viral life cycle and pathogenesis. By facilitating viral replication, it promotes the dysregulation of inflammatory pathways, leading to cytokine storm, and triggers DNA damage response (DDR), thus exacerbating disease progression. The 2-E channel, a viroporin, is a promising antiviral target. However, the lack of specific inhibitors and effective screening methods has hindered therapeutic exploitation of the 2-E channel. To address this gap, we report on a fluorescence-based screening assay that targets the 2-E channel activity, resulting in the identification of potential inhibitory molecules. After performing both electrophysiological studies and surface plasmon resonance (SPR) analyses, we identified the top-ranked candidate, TPN10518, as a pore-blocking inhibitor of the 2-E channel. TPN10518 binds to a hydrophobic pocket in the C-terminal vestibule of the 2-E channel, thereby inhibiting its activity. Functional evaluation showed that TPN10518 exhibits significant antiviral efficacy <em>in vitro</em>, while, at the same time, effectively protecting against 2-E channel-mediated host damage and suppressing cytokine storm caused by dysregulated homeostasis of inflammatory pathways <em>in vivo</em>. Therefore, our work introduces a screening method for targeting 2-E channels, establishes the 2-E channel as a viable therapeutic target against SARS-CoV-2, and identifies TPN10518 as a promising antiviral candidate.</div></div>","PeriodicalId":34305,"journal":{"name":"Current Research in Microbial Sciences","volume":"9 ","pages":"Article 100409"},"PeriodicalIF":5.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Screening and discovery of an antiviral candidate inhibiting the SARS-CoV-2 envelope (2-E) channel\",\"authors\":\"Han Zhang , Shuxin Shi , Lujia Sun , Shuangqu Li , Yan Zhang , Ziyue Li , Jingjing Hou , Pingan Li , Jingshan Shen , Xi Cheng , Shibo Jiang , Zhaobing Gao , Xinling Wang , Xiangrui Jiang , Bingqing Xia\",\"doi\":\"10.1016/j.crmicr.2025.100409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The SARS-CoV-2-encoded 2-E channel is critical in the viral life cycle and pathogenesis. By facilitating viral replication, it promotes the dysregulation of inflammatory pathways, leading to cytokine storm, and triggers DNA damage response (DDR), thus exacerbating disease progression. The 2-E channel, a viroporin, is a promising antiviral target. However, the lack of specific inhibitors and effective screening methods has hindered therapeutic exploitation of the 2-E channel. To address this gap, we report on a fluorescence-based screening assay that targets the 2-E channel activity, resulting in the identification of potential inhibitory molecules. After performing both electrophysiological studies and surface plasmon resonance (SPR) analyses, we identified the top-ranked candidate, TPN10518, as a pore-blocking inhibitor of the 2-E channel. TPN10518 binds to a hydrophobic pocket in the C-terminal vestibule of the 2-E channel, thereby inhibiting its activity. Functional evaluation showed that TPN10518 exhibits significant antiviral efficacy <em>in vitro</em>, while, at the same time, effectively protecting against 2-E channel-mediated host damage and suppressing cytokine storm caused by dysregulated homeostasis of inflammatory pathways <em>in vivo</em>. Therefore, our work introduces a screening method for targeting 2-E channels, establishes the 2-E channel as a viable therapeutic target against SARS-CoV-2, and identifies TPN10518 as a promising antiviral candidate.</div></div>\",\"PeriodicalId\":34305,\"journal\":{\"name\":\"Current Research in Microbial Sciences\",\"volume\":\"9 \",\"pages\":\"Article 100409\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Research in Microbial Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666517425000719\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Microbial Sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666517425000719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Screening and discovery of an antiviral candidate inhibiting the SARS-CoV-2 envelope (2-E) channel
The SARS-CoV-2-encoded 2-E channel is critical in the viral life cycle and pathogenesis. By facilitating viral replication, it promotes the dysregulation of inflammatory pathways, leading to cytokine storm, and triggers DNA damage response (DDR), thus exacerbating disease progression. The 2-E channel, a viroporin, is a promising antiviral target. However, the lack of specific inhibitors and effective screening methods has hindered therapeutic exploitation of the 2-E channel. To address this gap, we report on a fluorescence-based screening assay that targets the 2-E channel activity, resulting in the identification of potential inhibitory molecules. After performing both electrophysiological studies and surface plasmon resonance (SPR) analyses, we identified the top-ranked candidate, TPN10518, as a pore-blocking inhibitor of the 2-E channel. TPN10518 binds to a hydrophobic pocket in the C-terminal vestibule of the 2-E channel, thereby inhibiting its activity. Functional evaluation showed that TPN10518 exhibits significant antiviral efficacy in vitro, while, at the same time, effectively protecting against 2-E channel-mediated host damage and suppressing cytokine storm caused by dysregulated homeostasis of inflammatory pathways in vivo. Therefore, our work introduces a screening method for targeting 2-E channels, establishes the 2-E channel as a viable therapeutic target against SARS-CoV-2, and identifies TPN10518 as a promising antiviral candidate.