压力、颗粒形态、涂层和热处理对全固态电池正极活性材料有效电子导电性的影响

IF 8.7 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Vanessa Miß, Stefan Seus, Anna Marx, Elisa D. Steyer, Valeriu Mereacre, Joachim R. Binder and Bernhard Roling*, 
{"title":"压力、颗粒形态、涂层和热处理对全固态电池正极活性材料有效电子导电性的影响","authors":"Vanessa Miß,&nbsp;Stefan Seus,&nbsp;Anna Marx,&nbsp;Elisa D. Steyer,&nbsp;Valeriu Mereacre,&nbsp;Joachim R. Binder and Bernhard Roling*,&nbsp;","doi":"10.1021/acsmaterialslett.4c0259510.1021/acsmaterialslett.4c02595","DOIUrl":null,"url":null,"abstract":"<p >For modeling electrochemical processes in all-solid-state batteries, reliable values for the electronic conductivity of cathode active materials (CAM) are of the utmost importance. Published values for a specific CAM vary by typically many orders of magnitude. Therefore, we carried out a systematic study on the influence of various experimental parameters on the effective electronic conductivity of CAM pellets. These parameters are applied stack pressure, Ni content of CAM, CAM particle morphology, particle coating, and heat treatment. Pellets of fully lithiated and uncoated Ni-rich NMC particles reach effective electronic conductivities σ<sub><i>eon</i></sub><sup><i>eff</i></sup> in the range of 10<sup>–1</sup> S/cm at high pressures and 10<sup>–2</sup> S/cm at low pressures. Particle coating by LiNbO<sub>3</sub> lowers σ<sub><i>eon</i></sub><sup><i>eff</i></sup> by half an order to 1 order of magnitude. While heat treatment at 900 °C is capable of removing surface impurities on the CAM particle, it also leads to increased Li/Ni disorder in the bulk of the particles.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"7 6","pages":"2262–2269 2262–2269"},"PeriodicalIF":8.7000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmaterialslett.4c02595","citationCount":"0","resultStr":"{\"title\":\"Influence of Pressure, Particle Morphology, Coating, and Heat Treatment on the Effective Electronic Conductivity of Cathode Active Materials for All-Solid-State Batteries\",\"authors\":\"Vanessa Miß,&nbsp;Stefan Seus,&nbsp;Anna Marx,&nbsp;Elisa D. Steyer,&nbsp;Valeriu Mereacre,&nbsp;Joachim R. Binder and Bernhard Roling*,&nbsp;\",\"doi\":\"10.1021/acsmaterialslett.4c0259510.1021/acsmaterialslett.4c02595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >For modeling electrochemical processes in all-solid-state batteries, reliable values for the electronic conductivity of cathode active materials (CAM) are of the utmost importance. Published values for a specific CAM vary by typically many orders of magnitude. Therefore, we carried out a systematic study on the influence of various experimental parameters on the effective electronic conductivity of CAM pellets. These parameters are applied stack pressure, Ni content of CAM, CAM particle morphology, particle coating, and heat treatment. Pellets of fully lithiated and uncoated Ni-rich NMC particles reach effective electronic conductivities σ<sub><i>eon</i></sub><sup><i>eff</i></sup> in the range of 10<sup>–1</sup> S/cm at high pressures and 10<sup>–2</sup> S/cm at low pressures. Particle coating by LiNbO<sub>3</sub> lowers σ<sub><i>eon</i></sub><sup><i>eff</i></sup> by half an order to 1 order of magnitude. While heat treatment at 900 °C is capable of removing surface impurities on the CAM particle, it also leads to increased Li/Ni disorder in the bulk of the particles.</p>\",\"PeriodicalId\":19,\"journal\":{\"name\":\"ACS Materials Letters\",\"volume\":\"7 6\",\"pages\":\"2262–2269 2262–2269\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2025-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsmaterialslett.4c02595\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Materials Letters\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsmaterialslett.4c02595\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Letters","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmaterialslett.4c02595","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

为了模拟全固态电池的电化学过程,阴极活性材料(CAM)电导率的可靠值至关重要。特定CAM的发布值通常相差许多数量级。因此,我们对各种实验参数对CAM球团有效电子导电性的影响进行了系统的研究。这些参数是应用堆压、CAM的Ni含量、CAM的颗粒形貌、颗粒涂层和热处理。完全锂化和未包覆的富镍NMC颗粒在高压和低压下的有效电子电导率分别为10-1 S/cm和10-2 S/cm。LiNbO3颗粒包覆可使σeoneff降低0.5 ~ 1个数量级。虽然900℃的热处理能够去除CAM颗粒表面的杂质,但也会导致大部分颗粒中Li/Ni的无序性增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influence of Pressure, Particle Morphology, Coating, and Heat Treatment on the Effective Electronic Conductivity of Cathode Active Materials for All-Solid-State Batteries

For modeling electrochemical processes in all-solid-state batteries, reliable values for the electronic conductivity of cathode active materials (CAM) are of the utmost importance. Published values for a specific CAM vary by typically many orders of magnitude. Therefore, we carried out a systematic study on the influence of various experimental parameters on the effective electronic conductivity of CAM pellets. These parameters are applied stack pressure, Ni content of CAM, CAM particle morphology, particle coating, and heat treatment. Pellets of fully lithiated and uncoated Ni-rich NMC particles reach effective electronic conductivities σeoneff in the range of 10–1 S/cm at high pressures and 10–2 S/cm at low pressures. Particle coating by LiNbO3 lowers σeoneff by half an order to 1 order of magnitude. While heat treatment at 900 °C is capable of removing surface impurities on the CAM particle, it also leads to increased Li/Ni disorder in the bulk of the particles.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Materials Letters
ACS Materials Letters MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
14.60
自引率
3.50%
发文量
261
期刊介绍: ACS Materials Letters is a journal that publishes high-quality and urgent papers at the forefront of fundamental and applied research in the field of materials science. It aims to bridge the gap between materials and other disciplines such as chemistry, engineering, and biology. The journal encourages multidisciplinary and innovative research that addresses global challenges. Papers submitted to ACS Materials Letters should clearly demonstrate the need for rapid disclosure of key results. The journal is interested in various areas including the design, synthesis, characterization, and evaluation of emerging materials, understanding the relationships between structure, property, and performance, as well as developing materials for applications in energy, environment, biomedical, electronics, and catalysis. The journal has a 2-year impact factor of 11.4 and is dedicated to publishing transformative materials research with fast processing times. The editors and staff of ACS Materials Letters actively participate in major scientific conferences and engage closely with readers and authors. The journal also maintains an active presence on social media to provide authors with greater visibility.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信