{"title":"钙离子过载光热放大用于肿瘤归巢治疗","authors":"Yu Chen, Shuo Gao, Cong-Min Huo, Xin-Cheng He, Yucheng Zuo, Jun-Nan Zhang, Wei Xue* and Jing-Yi Zhu*, ","doi":"10.1021/acsmaterialslett.5c0046110.1021/acsmaterialslett.5c00461","DOIUrl":null,"url":null,"abstract":"<p >Calcium ion (Ca<sup>2+</sup>) overload has been extensively explored in tumor therapy; however, the inadequate concentrations of Ca<sup>2+</sup> frequently result in suboptimal therapeutic outcomes. In this study, we developed curcumin (Cur)-loaded amorphous carbonated calcium nanoparticles (CaCur, NPs), which were coated with cancer cell membranes (CCM) to facilitate targeted delivery. Additionally, the fluorescence dye DiR was embedded into the CCM to achieve photothermal effects, thereby enabling the opening of the transient receptor potential vanilloid 1 (TRPV1) channel, which promotes amplified Ca<sup>2+</sup> overload through increased Ca<sup>2+</sup> influx. This work provides a photothermal amplification strategy aiming at improving antitumor efficacy by robustly enhancing the extent of Ca<sup>2+</sup> overload through a tripartite collaboration.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"7 6","pages":"2319–2327 2319–2327"},"PeriodicalIF":9.6000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photothermal Amplification of Calcium Ion Overload for Tumor Homing Therapy\",\"authors\":\"Yu Chen, Shuo Gao, Cong-Min Huo, Xin-Cheng He, Yucheng Zuo, Jun-Nan Zhang, Wei Xue* and Jing-Yi Zhu*, \",\"doi\":\"10.1021/acsmaterialslett.5c0046110.1021/acsmaterialslett.5c00461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Calcium ion (Ca<sup>2+</sup>) overload has been extensively explored in tumor therapy; however, the inadequate concentrations of Ca<sup>2+</sup> frequently result in suboptimal therapeutic outcomes. In this study, we developed curcumin (Cur)-loaded amorphous carbonated calcium nanoparticles (CaCur, NPs), which were coated with cancer cell membranes (CCM) to facilitate targeted delivery. Additionally, the fluorescence dye DiR was embedded into the CCM to achieve photothermal effects, thereby enabling the opening of the transient receptor potential vanilloid 1 (TRPV1) channel, which promotes amplified Ca<sup>2+</sup> overload through increased Ca<sup>2+</sup> influx. This work provides a photothermal amplification strategy aiming at improving antitumor efficacy by robustly enhancing the extent of Ca<sup>2+</sup> overload through a tripartite collaboration.</p>\",\"PeriodicalId\":19,\"journal\":{\"name\":\"ACS Materials Letters\",\"volume\":\"7 6\",\"pages\":\"2319–2327 2319–2327\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Materials Letters\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsmaterialslett.5c00461\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Letters","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmaterialslett.5c00461","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Photothermal Amplification of Calcium Ion Overload for Tumor Homing Therapy
Calcium ion (Ca2+) overload has been extensively explored in tumor therapy; however, the inadequate concentrations of Ca2+ frequently result in suboptimal therapeutic outcomes. In this study, we developed curcumin (Cur)-loaded amorphous carbonated calcium nanoparticles (CaCur, NPs), which were coated with cancer cell membranes (CCM) to facilitate targeted delivery. Additionally, the fluorescence dye DiR was embedded into the CCM to achieve photothermal effects, thereby enabling the opening of the transient receptor potential vanilloid 1 (TRPV1) channel, which promotes amplified Ca2+ overload through increased Ca2+ influx. This work provides a photothermal amplification strategy aiming at improving antitumor efficacy by robustly enhancing the extent of Ca2+ overload through a tripartite collaboration.
期刊介绍:
ACS Materials Letters is a journal that publishes high-quality and urgent papers at the forefront of fundamental and applied research in the field of materials science. It aims to bridge the gap between materials and other disciplines such as chemistry, engineering, and biology. The journal encourages multidisciplinary and innovative research that addresses global challenges. Papers submitted to ACS Materials Letters should clearly demonstrate the need for rapid disclosure of key results. The journal is interested in various areas including the design, synthesis, characterization, and evaluation of emerging materials, understanding the relationships between structure, property, and performance, as well as developing materials for applications in energy, environment, biomedical, electronics, and catalysis. The journal has a 2-year impact factor of 11.4 and is dedicated to publishing transformative materials research with fast processing times. The editors and staff of ACS Materials Letters actively participate in major scientific conferences and engage closely with readers and authors. The journal also maintains an active presence on social media to provide authors with greater visibility.