Ciara Keating, Anna Trego, Vincent O'Flaherty, Umer Zeeshan Ijaz
{"title":"高速率厌氧消化器的微生物群揭示了“研究”-合成废水的特定因素和局限性","authors":"Ciara Keating, Anna Trego, Vincent O'Flaherty, Umer Zeeshan Ijaz","doi":"10.1016/j.watres.2025.123931","DOIUrl":null,"url":null,"abstract":"Anaerobic digestion (AD) is a key technology for the treatment of organic wastes and the production of renewable energy. The stability of the process hinges on the underlying microbial populations. Amplicon sequencing is increasingly used to characterise AD microbiomes, yet sequencing efforts have not translated to process engineering of the microbiome or prediction of failure using microbial tools. Using high-rate biofilm wastewater bioreactors as a study system, we aimed to i) discern trends in archaeal and bacterial diversity, ii) identify a core AD microbiome, iii) determine the functional stability of AD microbiomes, and iv) correlate taxa to experimental conditions. We analysed amplicon sequencing data from 32 high-rate anaerobic digestor studies (> 1,258 samples) at various operational conditions and applied a suite of statistical microbiome tools. We found that taxonomic archaeal diversity was highly study dependent, while functional diversity was highly shared across studies. A core AD microbiome was identified with > 100 bacterial genera and 6 archaeal genera which were present at > 1 % relative abundance in at least 50% of samples. Interestingly, we observed that microbiome stability was significantly impacted by the choice of real or synthetic wastewater, with synthetic wastewaters yielding a more stable and less complex microbiome. This was correlated to the abundances of 37 taxa in the synthetic wastewater, including 3 key methanogens (<em>Methanothrix, Methanobacterium</em>, and <em>Methanosphaerula</em>). This suggests that when synthetic wastewater is used in experimental studies, it may not result in an AD microbiome representative of real wastewater treatment systems.","PeriodicalId":443,"journal":{"name":"Water Research","volume":"98 1","pages":""},"PeriodicalIF":12.4000,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microbiomes of High-Rate Anaerobic Digestors Reveal ‘Study’-Specific Factors and Limitations of Synthetic Wastewater\",\"authors\":\"Ciara Keating, Anna Trego, Vincent O'Flaherty, Umer Zeeshan Ijaz\",\"doi\":\"10.1016/j.watres.2025.123931\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Anaerobic digestion (AD) is a key technology for the treatment of organic wastes and the production of renewable energy. The stability of the process hinges on the underlying microbial populations. Amplicon sequencing is increasingly used to characterise AD microbiomes, yet sequencing efforts have not translated to process engineering of the microbiome or prediction of failure using microbial tools. Using high-rate biofilm wastewater bioreactors as a study system, we aimed to i) discern trends in archaeal and bacterial diversity, ii) identify a core AD microbiome, iii) determine the functional stability of AD microbiomes, and iv) correlate taxa to experimental conditions. We analysed amplicon sequencing data from 32 high-rate anaerobic digestor studies (> 1,258 samples) at various operational conditions and applied a suite of statistical microbiome tools. We found that taxonomic archaeal diversity was highly study dependent, while functional diversity was highly shared across studies. A core AD microbiome was identified with > 100 bacterial genera and 6 archaeal genera which were present at > 1 % relative abundance in at least 50% of samples. Interestingly, we observed that microbiome stability was significantly impacted by the choice of real or synthetic wastewater, with synthetic wastewaters yielding a more stable and less complex microbiome. This was correlated to the abundances of 37 taxa in the synthetic wastewater, including 3 key methanogens (<em>Methanothrix, Methanobacterium</em>, and <em>Methanosphaerula</em>). This suggests that when synthetic wastewater is used in experimental studies, it may not result in an AD microbiome representative of real wastewater treatment systems.\",\"PeriodicalId\":443,\"journal\":{\"name\":\"Water Research\",\"volume\":\"98 1\",\"pages\":\"\"},\"PeriodicalIF\":12.4000,\"publicationDate\":\"2025-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.watres.2025.123931\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.watres.2025.123931","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Microbiomes of High-Rate Anaerobic Digestors Reveal ‘Study’-Specific Factors and Limitations of Synthetic Wastewater
Anaerobic digestion (AD) is a key technology for the treatment of organic wastes and the production of renewable energy. The stability of the process hinges on the underlying microbial populations. Amplicon sequencing is increasingly used to characterise AD microbiomes, yet sequencing efforts have not translated to process engineering of the microbiome or prediction of failure using microbial tools. Using high-rate biofilm wastewater bioreactors as a study system, we aimed to i) discern trends in archaeal and bacterial diversity, ii) identify a core AD microbiome, iii) determine the functional stability of AD microbiomes, and iv) correlate taxa to experimental conditions. We analysed amplicon sequencing data from 32 high-rate anaerobic digestor studies (> 1,258 samples) at various operational conditions and applied a suite of statistical microbiome tools. We found that taxonomic archaeal diversity was highly study dependent, while functional diversity was highly shared across studies. A core AD microbiome was identified with > 100 bacterial genera and 6 archaeal genera which were present at > 1 % relative abundance in at least 50% of samples. Interestingly, we observed that microbiome stability was significantly impacted by the choice of real or synthetic wastewater, with synthetic wastewaters yielding a more stable and less complex microbiome. This was correlated to the abundances of 37 taxa in the synthetic wastewater, including 3 key methanogens (Methanothrix, Methanobacterium, and Methanosphaerula). This suggests that when synthetic wastewater is used in experimental studies, it may not result in an AD microbiome representative of real wastewater treatment systems.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.