{"title":"蓝藻和共生细菌之间的种间氢转移驱动氮的损失","authors":"Lingrui Kong, Yiming Feng, Ru Zheng, Xiaogang Wu, Yimin Mao, Jingqi Sun, Sitong Liu","doi":"10.1038/s41467-025-60327-x","DOIUrl":null,"url":null,"abstract":"<p>The trace concentration of H<sub>2</sub> in most ecosystems after the Earth’s oxidation has long caused the neglect of hydrogenotrophic denitrification for nitrogen loss. Here, we find that the interspecies hydrogen transfer between cyanobacteria and symbiotic bacteria within cyanobacterial aggregates is an undiscovered pathway for nitrogen loss. Cyanobacteria in aggregates can actively generate H<sub>2</sub> under the diel cycle as an electron donor for neighboring hydrogenotrophic denitrifiers. The hydrogenotrophic denitrification in engineered cyanobacterial aggregates accounts for a nitrogen removal rate of 3.47 ± 0.42 mmol l<sup>−1</sup> day<sup>−1</sup>. This value is nearly 50% of the heterotrophic denitrification rate, which far exceeds the general concept of the trace role. We find that H<sub>2</sub>-evolving cyanobacteria and hydrogenotrophic denitrifiers coexist in 84% of the 63 globally distributed cyanobacterial aggregates, where bloom colonies and phototrophic mats from hot springs are identified as potential hotspots. We suggest that interspecies hydrogen transfer within cyanobacterial aggregates is possibly responsible for the excessive nitrogen loss rate during cyanobacterial blooms where cyanobacterial aggregates persist.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"418 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interspecies hydrogen transfer between cyanobacteria and symbiotic bacteria drives nitrogen loss\",\"authors\":\"Lingrui Kong, Yiming Feng, Ru Zheng, Xiaogang Wu, Yimin Mao, Jingqi Sun, Sitong Liu\",\"doi\":\"10.1038/s41467-025-60327-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The trace concentration of H<sub>2</sub> in most ecosystems after the Earth’s oxidation has long caused the neglect of hydrogenotrophic denitrification for nitrogen loss. Here, we find that the interspecies hydrogen transfer between cyanobacteria and symbiotic bacteria within cyanobacterial aggregates is an undiscovered pathway for nitrogen loss. Cyanobacteria in aggregates can actively generate H<sub>2</sub> under the diel cycle as an electron donor for neighboring hydrogenotrophic denitrifiers. The hydrogenotrophic denitrification in engineered cyanobacterial aggregates accounts for a nitrogen removal rate of 3.47 ± 0.42 mmol l<sup>−1</sup> day<sup>−1</sup>. This value is nearly 50% of the heterotrophic denitrification rate, which far exceeds the general concept of the trace role. We find that H<sub>2</sub>-evolving cyanobacteria and hydrogenotrophic denitrifiers coexist in 84% of the 63 globally distributed cyanobacterial aggregates, where bloom colonies and phototrophic mats from hot springs are identified as potential hotspots. We suggest that interspecies hydrogen transfer within cyanobacterial aggregates is possibly responsible for the excessive nitrogen loss rate during cyanobacterial blooms where cyanobacterial aggregates persist.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"418 1\",\"pages\":\"\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2025-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-60327-x\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-60327-x","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Interspecies hydrogen transfer between cyanobacteria and symbiotic bacteria drives nitrogen loss
The trace concentration of H2 in most ecosystems after the Earth’s oxidation has long caused the neglect of hydrogenotrophic denitrification for nitrogen loss. Here, we find that the interspecies hydrogen transfer between cyanobacteria and symbiotic bacteria within cyanobacterial aggregates is an undiscovered pathway for nitrogen loss. Cyanobacteria in aggregates can actively generate H2 under the diel cycle as an electron donor for neighboring hydrogenotrophic denitrifiers. The hydrogenotrophic denitrification in engineered cyanobacterial aggregates accounts for a nitrogen removal rate of 3.47 ± 0.42 mmol l−1 day−1. This value is nearly 50% of the heterotrophic denitrification rate, which far exceeds the general concept of the trace role. We find that H2-evolving cyanobacteria and hydrogenotrophic denitrifiers coexist in 84% of the 63 globally distributed cyanobacterial aggregates, where bloom colonies and phototrophic mats from hot springs are identified as potential hotspots. We suggest that interspecies hydrogen transfer within cyanobacterial aggregates is possibly responsible for the excessive nitrogen loss rate during cyanobacterial blooms where cyanobacterial aggregates persist.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.