量子网络中的代理引导优化

IF 6.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED
Luise Prielinger, Álvaro G. Iñesta, Gayane Vardoyan
{"title":"量子网络中的代理引导优化","authors":"Luise Prielinger, Álvaro G. Iñesta, Gayane Vardoyan","doi":"10.1038/s41534-025-01048-3","DOIUrl":null,"url":null,"abstract":"<p>When physical architectures become too complex for analytical study, numerical simulation proves essential to investigate quantum network behavior. Although highly informative, these simulations involve intricate numerical functions without known analytical forms, making traditional optimization techniques that assume continuity, differentiability, or convexity inapplicable. We introduce a more efficient computational framework that employs machine learning models as surrogates for the objective function. We demonstrate the effectiveness of our approach by applying it to three well-known optimization problems in quantum networking: allocating quantum memory across multiple nodes, tuning an experimental parameter in every physical link of a quantum entanglement switch, and finding effective protocol configurations in a large asymmetric quantum network. Our algorithm consistently outperforms Simulated Annealing and Bayesian optimization within the allotted time, improving results by up to 29% and 28%, respectively. Our framework will thus allow for more comprehensive quantum network studies, integrating surrogate-assisted optimization with existing quantum network simulators.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"8 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surrogate-guided optimization in quantum networks\",\"authors\":\"Luise Prielinger, Álvaro G. Iñesta, Gayane Vardoyan\",\"doi\":\"10.1038/s41534-025-01048-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>When physical architectures become too complex for analytical study, numerical simulation proves essential to investigate quantum network behavior. Although highly informative, these simulations involve intricate numerical functions without known analytical forms, making traditional optimization techniques that assume continuity, differentiability, or convexity inapplicable. We introduce a more efficient computational framework that employs machine learning models as surrogates for the objective function. We demonstrate the effectiveness of our approach by applying it to three well-known optimization problems in quantum networking: allocating quantum memory across multiple nodes, tuning an experimental parameter in every physical link of a quantum entanglement switch, and finding effective protocol configurations in a large asymmetric quantum network. Our algorithm consistently outperforms Simulated Annealing and Bayesian optimization within the allotted time, improving results by up to 29% and 28%, respectively. Our framework will thus allow for more comprehensive quantum network studies, integrating surrogate-assisted optimization with existing quantum network simulators.</p>\",\"PeriodicalId\":19212,\"journal\":{\"name\":\"npj Quantum Information\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Quantum Information\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s41534-025-01048-3\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-025-01048-3","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

当物理结构变得过于复杂而无法进行分析研究时,数值模拟证明了研究量子网络行为的必要条件。虽然这些模拟具有很高的信息量,但它们涉及复杂的数值函数,没有已知的解析形式,使得假设连续性、可微性或凸性的传统优化技术不适用。我们引入了一个更有效的计算框架,它使用机器学习模型作为目标函数的替代品。我们通过将其应用于量子网络中三个众所周知的优化问题来证明我们的方法的有效性:跨多个节点分配量子内存,在量子纠缠交换机的每个物理链路中调整实验参数,以及在大型非对称量子网络中找到有效的协议配置。我们的算法在分配的时间内始终优于模拟退火和贝叶斯优化,分别提高了29%和28%的结果。因此,我们的框架将允许更全面的量子网络研究,将代理辅助优化与现有量子网络模拟器集成在一起。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Surrogate-guided optimization in quantum networks

Surrogate-guided optimization in quantum networks

When physical architectures become too complex for analytical study, numerical simulation proves essential to investigate quantum network behavior. Although highly informative, these simulations involve intricate numerical functions without known analytical forms, making traditional optimization techniques that assume continuity, differentiability, or convexity inapplicable. We introduce a more efficient computational framework that employs machine learning models as surrogates for the objective function. We demonstrate the effectiveness of our approach by applying it to three well-known optimization problems in quantum networking: allocating quantum memory across multiple nodes, tuning an experimental parameter in every physical link of a quantum entanglement switch, and finding effective protocol configurations in a large asymmetric quantum network. Our algorithm consistently outperforms Simulated Annealing and Bayesian optimization within the allotted time, improving results by up to 29% and 28%, respectively. Our framework will thus allow for more comprehensive quantum network studies, integrating surrogate-assisted optimization with existing quantum network simulators.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Quantum Information
npj Quantum Information Computer Science-Computer Science (miscellaneous)
CiteScore
13.70
自引率
3.90%
发文量
130
审稿时长
29 weeks
期刊介绍: The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信