{"title":"环境友好型抑制剂海藻酸钠选择性浮选钛铁矿与细粒钛辉矿:实验与机理研究","authors":"Jiaqiao Yuan, Xiang Gong, Hongyu Lu, Hao Lai, Shuming Wen, Shaojun Bai, Dandan Wu, Yongxing Zheng","doi":"10.1016/j.apsusc.2025.163705","DOIUrl":null,"url":null,"abstract":"The flotation separation of fine-grained ilmenite and titanaugite is a challenging issue. This study employed an environmentally friendly inhibitor, sodium alginate (SA), to overcome this challenge. Single mineral flotation results demonstrated that SA exhibited significant depression on fine-grained titanaugite over a wide pH range, while inhibitory effects on ilmenite was small. Furthermore, binary mixed mineral flotation experiments revealed that a concentrate with a grade of 37.52 % and a recovery of 65.15 % could obtain using 6.0 mg/L of SA. AFM images confirmed that SA had stable and dense adsorption on the surface of titanaugite compared to ilmenite, which hindered further adsorption of NaOL. Zeta potential and FTIR analyses indicated that SA underwent strong chemisorption on the titanaugite surface, while its interaction with ilmenite was comparatively weak, resulting in a considerable increase in the floatability difference between the two minerals. XPS analysis and DFT calculations confirmed that the carboxyl group within SA formed a stable bridge adsorption configuration with the Ca and Mg sites of titanaugite. However, SA had feeble influence the chemical interactions between NaOL and the Fe site on ilmenite. Consequently, SA shows a greater affinity for titanaugite than ilmenite, which facilitates the selective separation of fine-grained ilmenite from titanaugite.","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"67 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Selective flotation separation of ilmenite from fine-grained titanaugite utilizing environmentally friendly depressant sodium alginate: Experimental and mechanistic study\",\"authors\":\"Jiaqiao Yuan, Xiang Gong, Hongyu Lu, Hao Lai, Shuming Wen, Shaojun Bai, Dandan Wu, Yongxing Zheng\",\"doi\":\"10.1016/j.apsusc.2025.163705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The flotation separation of fine-grained ilmenite and titanaugite is a challenging issue. This study employed an environmentally friendly inhibitor, sodium alginate (SA), to overcome this challenge. Single mineral flotation results demonstrated that SA exhibited significant depression on fine-grained titanaugite over a wide pH range, while inhibitory effects on ilmenite was small. Furthermore, binary mixed mineral flotation experiments revealed that a concentrate with a grade of 37.52 % and a recovery of 65.15 % could obtain using 6.0 mg/L of SA. AFM images confirmed that SA had stable and dense adsorption on the surface of titanaugite compared to ilmenite, which hindered further adsorption of NaOL. Zeta potential and FTIR analyses indicated that SA underwent strong chemisorption on the titanaugite surface, while its interaction with ilmenite was comparatively weak, resulting in a considerable increase in the floatability difference between the two minerals. XPS analysis and DFT calculations confirmed that the carboxyl group within SA formed a stable bridge adsorption configuration with the Ca and Mg sites of titanaugite. However, SA had feeble influence the chemical interactions between NaOL and the Fe site on ilmenite. Consequently, SA shows a greater affinity for titanaugite than ilmenite, which facilitates the selective separation of fine-grained ilmenite from titanaugite.\",\"PeriodicalId\":247,\"journal\":{\"name\":\"Applied Surface Science\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Surface Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.apsusc.2025.163705\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.apsusc.2025.163705","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Selective flotation separation of ilmenite from fine-grained titanaugite utilizing environmentally friendly depressant sodium alginate: Experimental and mechanistic study
The flotation separation of fine-grained ilmenite and titanaugite is a challenging issue. This study employed an environmentally friendly inhibitor, sodium alginate (SA), to overcome this challenge. Single mineral flotation results demonstrated that SA exhibited significant depression on fine-grained titanaugite over a wide pH range, while inhibitory effects on ilmenite was small. Furthermore, binary mixed mineral flotation experiments revealed that a concentrate with a grade of 37.52 % and a recovery of 65.15 % could obtain using 6.0 mg/L of SA. AFM images confirmed that SA had stable and dense adsorption on the surface of titanaugite compared to ilmenite, which hindered further adsorption of NaOL. Zeta potential and FTIR analyses indicated that SA underwent strong chemisorption on the titanaugite surface, while its interaction with ilmenite was comparatively weak, resulting in a considerable increase in the floatability difference between the two minerals. XPS analysis and DFT calculations confirmed that the carboxyl group within SA formed a stable bridge adsorption configuration with the Ca and Mg sites of titanaugite. However, SA had feeble influence the chemical interactions between NaOL and the Fe site on ilmenite. Consequently, SA shows a greater affinity for titanaugite than ilmenite, which facilitates the selective separation of fine-grained ilmenite from titanaugite.
期刊介绍:
Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.