Paola Busia, Gianluca Leone, Andrea Matticola, Luigi Raffo, Paolo Meloni
{"title":"基于脉冲神经网络的FPGA可穿戴癫痫发作检测。","authors":"Paola Busia, Gianluca Leone, Andrea Matticola, Luigi Raffo, Paolo Meloni","doi":"10.1109/TBCAS.2025.3575327","DOIUrl":null,"url":null,"abstract":"<p><p>The development of epilepsy monitoring solutions suitable for everyday use is a very challenging task, where different constraints should be combined, resulting from the required accuracy standards, the unobtrusiveness of the monitoring device, and the efficiency of real-time operation. Considering the time-varying nature of the electroencephalography signal (EEG), Spiking Neural Networks (SNNs) represent a promising solution to model the evolution of the brain state based on the history of the previously processed signal. This work proposes an extremely lightweight SNN-based seizure detection solution, utilizing a simple encoding scheme to ensure high levels of sparsity. Despite the reduced complexity, the model provides a detection performance comparable with the state-of-the-art SNN-based approaches on the evaluated data from the CHB-MIT dataset, reaching a 96% area under the curve (AUC) and allowing 99.3% average accuracy, with the detection of 100% of the examined seizure events and a false alarm rate of 0.3 false positives per hour. The suitability for real-time inference execution on wearable monitoring devices was assessed on SYNtzulu, demonstrating 0.5 μs inference time with 4.55 nJ energy consumption.</p>","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":"PP ","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wearable Epilepsy Seizure Detection on FPGA with Spiking Neural Networks.\",\"authors\":\"Paola Busia, Gianluca Leone, Andrea Matticola, Luigi Raffo, Paolo Meloni\",\"doi\":\"10.1109/TBCAS.2025.3575327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The development of epilepsy monitoring solutions suitable for everyday use is a very challenging task, where different constraints should be combined, resulting from the required accuracy standards, the unobtrusiveness of the monitoring device, and the efficiency of real-time operation. Considering the time-varying nature of the electroencephalography signal (EEG), Spiking Neural Networks (SNNs) represent a promising solution to model the evolution of the brain state based on the history of the previously processed signal. This work proposes an extremely lightweight SNN-based seizure detection solution, utilizing a simple encoding scheme to ensure high levels of sparsity. Despite the reduced complexity, the model provides a detection performance comparable with the state-of-the-art SNN-based approaches on the evaluated data from the CHB-MIT dataset, reaching a 96% area under the curve (AUC) and allowing 99.3% average accuracy, with the detection of 100% of the examined seizure events and a false alarm rate of 0.3 false positives per hour. The suitability for real-time inference execution on wearable monitoring devices was assessed on SYNtzulu, demonstrating 0.5 μs inference time with 4.55 nJ energy consumption.</p>\",\"PeriodicalId\":94031,\"journal\":{\"name\":\"IEEE transactions on biomedical circuits and systems\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on biomedical circuits and systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TBCAS.2025.3575327\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biomedical circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TBCAS.2025.3575327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Wearable Epilepsy Seizure Detection on FPGA with Spiking Neural Networks.
The development of epilepsy monitoring solutions suitable for everyday use is a very challenging task, where different constraints should be combined, resulting from the required accuracy standards, the unobtrusiveness of the monitoring device, and the efficiency of real-time operation. Considering the time-varying nature of the electroencephalography signal (EEG), Spiking Neural Networks (SNNs) represent a promising solution to model the evolution of the brain state based on the history of the previously processed signal. This work proposes an extremely lightweight SNN-based seizure detection solution, utilizing a simple encoding scheme to ensure high levels of sparsity. Despite the reduced complexity, the model provides a detection performance comparable with the state-of-the-art SNN-based approaches on the evaluated data from the CHB-MIT dataset, reaching a 96% area under the curve (AUC) and allowing 99.3% average accuracy, with the detection of 100% of the examined seizure events and a false alarm rate of 0.3 false positives per hour. The suitability for real-time inference execution on wearable monitoring devices was assessed on SYNtzulu, demonstrating 0.5 μs inference time with 4.55 nJ energy consumption.