{"title":"用于复杂透射电子显微镜图像分析的深度学习驱动的自动线粒体分割。","authors":"Chan Jang, Hojun Lee, Jaejun Yoo, Haejin Yoon","doi":"10.1038/s41598-025-03311-1","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondria are central to cellular energy production and regulation, with their morphology tightly linked to functional performance. Precise analysis of mitochondrial ultrastructure is crucial for understanding cellular bioenergetics and pathology. While transmission electron microscopy (TEM) remains the gold standard for such analyses, traditional manual segmentation methods are time-consuming and prone to error. In this study, we introduce a novel deep learning framework that combines probabilistic interactive segmentation with automated quantification of mitochondrial morphology. Leveraging uncertainty analysis and real-time user feedback, the model achieves comparable segmentation accuracy while reducing analysis time by 90% compared to manual methods. Evaluated on both benchmark Lucchi++ datasets and real-world TEM images of mouse skeletal muscle, the pipeline not only improved efficiency but also identified key pathological differences in mitochondrial morphology between wild-type and mdx mouse models of Duchenne muscular dystrophy. This automated approach offers a powerful, scalable tool for mitochondrial analysis, enabling high-throughput and reproducible insights into cellular function and disease mechanisms.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"19076"},"PeriodicalIF":3.9000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12125239/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deep learning-driven automated mitochondrial segmentation for analysis of complex transmission electron microscopy images.\",\"authors\":\"Chan Jang, Hojun Lee, Jaejun Yoo, Haejin Yoon\",\"doi\":\"10.1038/s41598-025-03311-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mitochondria are central to cellular energy production and regulation, with their morphology tightly linked to functional performance. Precise analysis of mitochondrial ultrastructure is crucial for understanding cellular bioenergetics and pathology. While transmission electron microscopy (TEM) remains the gold standard for such analyses, traditional manual segmentation methods are time-consuming and prone to error. In this study, we introduce a novel deep learning framework that combines probabilistic interactive segmentation with automated quantification of mitochondrial morphology. Leveraging uncertainty analysis and real-time user feedback, the model achieves comparable segmentation accuracy while reducing analysis time by 90% compared to manual methods. Evaluated on both benchmark Lucchi++ datasets and real-world TEM images of mouse skeletal muscle, the pipeline not only improved efficiency but also identified key pathological differences in mitochondrial morphology between wild-type and mdx mouse models of Duchenne muscular dystrophy. This automated approach offers a powerful, scalable tool for mitochondrial analysis, enabling high-throughput and reproducible insights into cellular function and disease mechanisms.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"19076\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12125239/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-03311-1\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-03311-1","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Deep learning-driven automated mitochondrial segmentation for analysis of complex transmission electron microscopy images.
Mitochondria are central to cellular energy production and regulation, with their morphology tightly linked to functional performance. Precise analysis of mitochondrial ultrastructure is crucial for understanding cellular bioenergetics and pathology. While transmission electron microscopy (TEM) remains the gold standard for such analyses, traditional manual segmentation methods are time-consuming and prone to error. In this study, we introduce a novel deep learning framework that combines probabilistic interactive segmentation with automated quantification of mitochondrial morphology. Leveraging uncertainty analysis and real-time user feedback, the model achieves comparable segmentation accuracy while reducing analysis time by 90% compared to manual methods. Evaluated on both benchmark Lucchi++ datasets and real-world TEM images of mouse skeletal muscle, the pipeline not only improved efficiency but also identified key pathological differences in mitochondrial morphology between wild-type and mdx mouse models of Duchenne muscular dystrophy. This automated approach offers a powerful, scalable tool for mitochondrial analysis, enabling high-throughput and reproducible insights into cellular function and disease mechanisms.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.