利用迁移学习方法进行植物病害检测。

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Bosubabu Sambana, Hillary Sunday Nnadi, Mohd Anas Wajid, Nwosu Ogochukwu Fidelia, Claudia Camacho-Zuñiga, Henry Dozie Ajuzie, Edeh Michael Onyema
{"title":"利用迁移学习方法进行植物病害检测。","authors":"Bosubabu Sambana, Hillary Sunday Nnadi, Mohd Anas Wajid, Nwosu Ogochukwu Fidelia, Claudia Camacho-Zuñiga, Henry Dozie Ajuzie, Edeh Michael Onyema","doi":"10.1038/s41598-025-02271-w","DOIUrl":null,"url":null,"abstract":"<p><p>Plant diseases pose significant challenges to farmers and the agricultural sector at large. However, early detection of plant diseases is crucial to mitigating their effects and preventing widespread damage, as outbreaks can severely impact the productivity and quality of crops. With advancements in technology, there are increasing opportunities for automating the monitoring and detection of disease outbreaks in plants. This study proposed a system designed to identify and monitor plant diseases using a transfer learning approach. Specifically, the study utilizes YOLOv7 and YOLOv8, two state-of-the-art models in the field of object detection. By fine-tuning these models on a dataset of plant leaf images, the system is able to accurately detect the presence of Bacteria, Fungi and Viral diseases such as Powdery Mildew, Angular Leaf Spot, Early blight and Tomato mosaic virus. The model's performance was evaluated using several metrics, including mean Average Precision (mAP), F1-score, Precision, and Recall, yielding values of 91.05, 89.40, 91.22, and 87.66, respectively. The result demonstrates the superior effectiveness and efficiency of YOLOv8 compared to other object detection methods, highlighting its potential for use in modern agricultural practices. The approach provides a scalable, automated solution for early any plant disease detection, contributing to enhanced crop yield, reduced reliance on manual monitoring, and supporting sustainable agricultural practices.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"19082"},"PeriodicalIF":3.9000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12125318/pdf/","citationCount":"0","resultStr":"{\"title\":\"An efficient plant disease detection using transfer learning approach.\",\"authors\":\"Bosubabu Sambana, Hillary Sunday Nnadi, Mohd Anas Wajid, Nwosu Ogochukwu Fidelia, Claudia Camacho-Zuñiga, Henry Dozie Ajuzie, Edeh Michael Onyema\",\"doi\":\"10.1038/s41598-025-02271-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plant diseases pose significant challenges to farmers and the agricultural sector at large. However, early detection of plant diseases is crucial to mitigating their effects and preventing widespread damage, as outbreaks can severely impact the productivity and quality of crops. With advancements in technology, there are increasing opportunities for automating the monitoring and detection of disease outbreaks in plants. This study proposed a system designed to identify and monitor plant diseases using a transfer learning approach. Specifically, the study utilizes YOLOv7 and YOLOv8, two state-of-the-art models in the field of object detection. By fine-tuning these models on a dataset of plant leaf images, the system is able to accurately detect the presence of Bacteria, Fungi and Viral diseases such as Powdery Mildew, Angular Leaf Spot, Early blight and Tomato mosaic virus. The model's performance was evaluated using several metrics, including mean Average Precision (mAP), F1-score, Precision, and Recall, yielding values of 91.05, 89.40, 91.22, and 87.66, respectively. The result demonstrates the superior effectiveness and efficiency of YOLOv8 compared to other object detection methods, highlighting its potential for use in modern agricultural practices. The approach provides a scalable, automated solution for early any plant disease detection, contributing to enhanced crop yield, reduced reliance on manual monitoring, and supporting sustainable agricultural practices.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"19082\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12125318/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-02271-w\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-02271-w","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

植物病害对农民和整个农业部门构成重大挑战。然而,植物病害的早期发现对于减轻其影响和防止大范围损害至关重要,因为病害的爆发可能严重影响作物的生产力和质量。随着技术的进步,自动化监测和检测植物疾病爆发的机会越来越多。本研究提出了一个利用迁移学习方法识别和监测植物病害的系统。具体来说,本研究使用了YOLOv7和YOLOv8这两种目标检测领域最先进的模型。通过在植物叶片图像数据集上对这些模型进行微调,该系统能够准确地检测出细菌、真菌和病毒疾病的存在,如白粉病、角叶斑病、早疫病和番茄花叶病毒。模型的性能使用几个指标进行评估,包括平均平均精度(mAP), f1分数,精度和召回率,分别产生91.05,89.40,91.22和87.66。结果表明,与其他目标检测方法相比,YOLOv8具有优越的有效性和效率,突出了其在现代农业实践中的应用潜力。该方法为任何植物病害的早期检测提供了可扩展的自动化解决方案,有助于提高作物产量,减少对人工监测的依赖,并支持可持续的农业实践。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

An efficient plant disease detection using transfer learning approach.

An efficient plant disease detection using transfer learning approach.

An efficient plant disease detection using transfer learning approach.

An efficient plant disease detection using transfer learning approach.

Plant diseases pose significant challenges to farmers and the agricultural sector at large. However, early detection of plant diseases is crucial to mitigating their effects and preventing widespread damage, as outbreaks can severely impact the productivity and quality of crops. With advancements in technology, there are increasing opportunities for automating the monitoring and detection of disease outbreaks in plants. This study proposed a system designed to identify and monitor plant diseases using a transfer learning approach. Specifically, the study utilizes YOLOv7 and YOLOv8, two state-of-the-art models in the field of object detection. By fine-tuning these models on a dataset of plant leaf images, the system is able to accurately detect the presence of Bacteria, Fungi and Viral diseases such as Powdery Mildew, Angular Leaf Spot, Early blight and Tomato mosaic virus. The model's performance was evaluated using several metrics, including mean Average Precision (mAP), F1-score, Precision, and Recall, yielding values of 91.05, 89.40, 91.22, and 87.66, respectively. The result demonstrates the superior effectiveness and efficiency of YOLOv8 compared to other object detection methods, highlighting its potential for use in modern agricultural practices. The approach provides a scalable, automated solution for early any plant disease detection, contributing to enhanced crop yield, reduced reliance on manual monitoring, and supporting sustainable agricultural practices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信