Carina Mikolai, Kathrin Wöll, Muhammad Imran Rahim, Andreas Winkel, Christine S Falk, Meike Stiesch
{"title":"在三维种植体-组织-口腔-细菌-生物膜模型中,抗菌治疗剂对生物膜-组织相互作用的影响。","authors":"Carina Mikolai, Kathrin Wöll, Muhammad Imran Rahim, Andreas Winkel, Christine S Falk, Meike Stiesch","doi":"10.1038/s41598-025-03855-2","DOIUrl":null,"url":null,"abstract":"<p><p>Bacterial biofilms on dental implants can lead to peri-implant infections and demonstrate a remarkable ability to evade host immunity and resist antibiotics. Advanced in vitro models, such as the three-dimensional implant-tissue-oral-bacterial-biofilm model (INTER<sub>b</sub>ACT), are essential to evaluate antibiofilm efficacy. The INTER<sub>b</sub>ACT model, effectively reproduces the complex triangular interactions between an organotypic oral mucosa, an integrated implant and an oral multispecies biofilms, in the peri-implant situation. Here, we investigated the effect of antibacterial agents (chlorhexidine, amoxicillin, ciprofloxacin, doxycycline, and metronidazole) on biofilm-tissue interactions in the INTER<sub>b</sub>ACT model. While the antibacterial interventions had no effect on biofilm volume, all agents decreased the proportion of viable bacteria, underscoring their effect on bacterial viability despite biofilm resilience. Biofilm exposure to untreated tissues caused epithelial damage, whereas all antibacterial agents preserved epithelial integrity. However, the modulation of pro-inflammatory response differed between the various agents. All antibacterial treatments reduced hBD-2 and TIMP-1 levels. While doxycycline decreased IL-1β and CCL20, chlorhexidine lowered TNF-α level. In conclusion, the INTER<sub>b</sub>ACT model allowed the successful assessment of antibacterial efficacy, elucidation of biofilm resistance and characterization of inflammation during peri-implant tissue-biofilm interactions. This validation highlights the model's potential as a platform for developing and evaluating new therapeutic strategies for peri-implant diseases.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"18979"},"PeriodicalIF":3.9000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12125177/pdf/","citationCount":"0","resultStr":"{\"title\":\"Impact of antibacterial therapeutic agents on biofilm-tissue interactions in a 3D implant-tissue-oral-bacterial-biofilm model.\",\"authors\":\"Carina Mikolai, Kathrin Wöll, Muhammad Imran Rahim, Andreas Winkel, Christine S Falk, Meike Stiesch\",\"doi\":\"10.1038/s41598-025-03855-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bacterial biofilms on dental implants can lead to peri-implant infections and demonstrate a remarkable ability to evade host immunity and resist antibiotics. Advanced in vitro models, such as the three-dimensional implant-tissue-oral-bacterial-biofilm model (INTER<sub>b</sub>ACT), are essential to evaluate antibiofilm efficacy. The INTER<sub>b</sub>ACT model, effectively reproduces the complex triangular interactions between an organotypic oral mucosa, an integrated implant and an oral multispecies biofilms, in the peri-implant situation. Here, we investigated the effect of antibacterial agents (chlorhexidine, amoxicillin, ciprofloxacin, doxycycline, and metronidazole) on biofilm-tissue interactions in the INTER<sub>b</sub>ACT model. While the antibacterial interventions had no effect on biofilm volume, all agents decreased the proportion of viable bacteria, underscoring their effect on bacterial viability despite biofilm resilience. Biofilm exposure to untreated tissues caused epithelial damage, whereas all antibacterial agents preserved epithelial integrity. However, the modulation of pro-inflammatory response differed between the various agents. All antibacterial treatments reduced hBD-2 and TIMP-1 levels. While doxycycline decreased IL-1β and CCL20, chlorhexidine lowered TNF-α level. In conclusion, the INTER<sub>b</sub>ACT model allowed the successful assessment of antibacterial efficacy, elucidation of biofilm resistance and characterization of inflammation during peri-implant tissue-biofilm interactions. This validation highlights the model's potential as a platform for developing and evaluating new therapeutic strategies for peri-implant diseases.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"18979\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12125177/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-03855-2\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-03855-2","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Impact of antibacterial therapeutic agents on biofilm-tissue interactions in a 3D implant-tissue-oral-bacterial-biofilm model.
Bacterial biofilms on dental implants can lead to peri-implant infections and demonstrate a remarkable ability to evade host immunity and resist antibiotics. Advanced in vitro models, such as the three-dimensional implant-tissue-oral-bacterial-biofilm model (INTERbACT), are essential to evaluate antibiofilm efficacy. The INTERbACT model, effectively reproduces the complex triangular interactions between an organotypic oral mucosa, an integrated implant and an oral multispecies biofilms, in the peri-implant situation. Here, we investigated the effect of antibacterial agents (chlorhexidine, amoxicillin, ciprofloxacin, doxycycline, and metronidazole) on biofilm-tissue interactions in the INTERbACT model. While the antibacterial interventions had no effect on biofilm volume, all agents decreased the proportion of viable bacteria, underscoring their effect on bacterial viability despite biofilm resilience. Biofilm exposure to untreated tissues caused epithelial damage, whereas all antibacterial agents preserved epithelial integrity. However, the modulation of pro-inflammatory response differed between the various agents. All antibacterial treatments reduced hBD-2 and TIMP-1 levels. While doxycycline decreased IL-1β and CCL20, chlorhexidine lowered TNF-α level. In conclusion, the INTERbACT model allowed the successful assessment of antibacterial efficacy, elucidation of biofilm resistance and characterization of inflammation during peri-implant tissue-biofilm interactions. This validation highlights the model's potential as a platform for developing and evaluating new therapeutic strategies for peri-implant diseases.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.