Venkata Nagaraju Thatha, M Ganesh Karthik, Venu Gopal Gaddam, D Pramodh Krishna, S Venkataramana, Kranthi Kumar Lella, Udayaraju Pamula
{"title":"基于组织病理学图像的乳腺癌诊断,使用深度学习和生物启发优化。","authors":"Venkata Nagaraju Thatha, M Ganesh Karthik, Venu Gopal Gaddam, D Pramodh Krishna, S Venkataramana, Kranthi Kumar Lella, Udayaraju Pamula","doi":"10.1038/s41598-025-04136-8","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer diagnosis remains a crucial challenge in medical research, necessitating accurate and automated detection methods. This study introduces an advanced deep learning framework for histopathological image classification, integrating AlexNet and Gated Recurrent Unit (GRU) networks, optimized using the Hippopotamus Optimization Algorithm (HOA). Initially, DenseNet-41 extracts intricate spatial features from histopathological images. These features are then processed by the hybrid AlexNet-GRU model, leveraging AlexNet's robust feature extraction and GRU's sequential learning capabilities. HOA is employed to fine-tune hyperparameters, ensuring optimal model performance. The proposed approach is evaluated on benchmark datasets (BreakHis and BACH), achieving a classification accuracy of 99.60%, surpassing existing state-of-the-art models. The results demonstrate the efficacy of integrating deep learning with bio-inspired optimization techniques in breast cancer detection. This research offers a robust and computationally efficient framework for improving early diagnosis and clinical decision-making, potentially enhancing patient outcomes.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"19034"},"PeriodicalIF":3.9000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12125401/pdf/","citationCount":"0","resultStr":"{\"title\":\"Histopathological image based breast cancer diagnosis using deep learning and bio inspired optimization.\",\"authors\":\"Venkata Nagaraju Thatha, M Ganesh Karthik, Venu Gopal Gaddam, D Pramodh Krishna, S Venkataramana, Kranthi Kumar Lella, Udayaraju Pamula\",\"doi\":\"10.1038/s41598-025-04136-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Breast cancer diagnosis remains a crucial challenge in medical research, necessitating accurate and automated detection methods. This study introduces an advanced deep learning framework for histopathological image classification, integrating AlexNet and Gated Recurrent Unit (GRU) networks, optimized using the Hippopotamus Optimization Algorithm (HOA). Initially, DenseNet-41 extracts intricate spatial features from histopathological images. These features are then processed by the hybrid AlexNet-GRU model, leveraging AlexNet's robust feature extraction and GRU's sequential learning capabilities. HOA is employed to fine-tune hyperparameters, ensuring optimal model performance. The proposed approach is evaluated on benchmark datasets (BreakHis and BACH), achieving a classification accuracy of 99.60%, surpassing existing state-of-the-art models. The results demonstrate the efficacy of integrating deep learning with bio-inspired optimization techniques in breast cancer detection. This research offers a robust and computationally efficient framework for improving early diagnosis and clinical decision-making, potentially enhancing patient outcomes.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"19034\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12125401/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-04136-8\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-04136-8","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Histopathological image based breast cancer diagnosis using deep learning and bio inspired optimization.
Breast cancer diagnosis remains a crucial challenge in medical research, necessitating accurate and automated detection methods. This study introduces an advanced deep learning framework for histopathological image classification, integrating AlexNet and Gated Recurrent Unit (GRU) networks, optimized using the Hippopotamus Optimization Algorithm (HOA). Initially, DenseNet-41 extracts intricate spatial features from histopathological images. These features are then processed by the hybrid AlexNet-GRU model, leveraging AlexNet's robust feature extraction and GRU's sequential learning capabilities. HOA is employed to fine-tune hyperparameters, ensuring optimal model performance. The proposed approach is evaluated on benchmark datasets (BreakHis and BACH), achieving a classification accuracy of 99.60%, surpassing existing state-of-the-art models. The results demonstrate the efficacy of integrating deep learning with bio-inspired optimization techniques in breast cancer detection. This research offers a robust and computationally efficient framework for improving early diagnosis and clinical decision-making, potentially enhancing patient outcomes.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.