Katharina Waury, Stefan Lelieveld, Sanne Abeln, Henk-Jan van den Ham
{"title":"基于序列和结构的抗体聚类方法在模拟库测序数据上的比较。","authors":"Katharina Waury, Stefan Lelieveld, Sanne Abeln, Henk-Jan van den Ham","doi":"10.1371/journal.pcbi.1013057","DOIUrl":null,"url":null,"abstract":"<p><p>Repertoire sequencing allows us to investigate the antibody-mediated immune response. The clustering of sequences is a crucial step in the data analysis pipeline, aiding in the identification of functionally related antibodies. The conventional clustering approach of clonotyping relies on sequence information, particularly CDRH3 sequence identity and V/J gene usage, to group sequences into clonotypes. It has been suggested that the limitations of sequence-based approaches to identify sequence-dissimilar but functionally converged antibodies can be overcome by using structure information to group antibodies. Recent advances have made structure-based methods feasible on a repertoire level. However, so far, their performance has only been evaluated on single-antigen sets of antibodies. A comprehensive comparison of the benefits and limitations of structure-based tools on realistic and diverse repertoire data is missing. Here, we aim to explore the promise of structure-based clustering algorithms to replace or augment the standard sequence-based approach, specifically by identifying low-sequence identity groups. Two methods, SAAB+ and SPACE2, are evaluated against clonotyping. We curated a dataset of well-annotated pairs of antibodies that show high overlap in epitope residues and thus bind the same region within their respective antigen. This set of antibodies was introduced into a simulated repertoire to compare the performance of clustering approaches on a diverse antibody set. Our analysis reveals that structure-based methods do group more antibodies together compared to clonotyping. However, it also highlights the limitations associated with the need for same-length CDR regions by SPACE2. This work thoroughly compares the utility of different clustering methods and provides insights into what further steps are required to effectively use antibody structural information to group immune repertoire data.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":"21 5","pages":"e1013057"},"PeriodicalIF":3.8000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of sequence- and structure-based antibody clustering approaches on simulated repertoire sequencing data.\",\"authors\":\"Katharina Waury, Stefan Lelieveld, Sanne Abeln, Henk-Jan van den Ham\",\"doi\":\"10.1371/journal.pcbi.1013057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Repertoire sequencing allows us to investigate the antibody-mediated immune response. The clustering of sequences is a crucial step in the data analysis pipeline, aiding in the identification of functionally related antibodies. The conventional clustering approach of clonotyping relies on sequence information, particularly CDRH3 sequence identity and V/J gene usage, to group sequences into clonotypes. It has been suggested that the limitations of sequence-based approaches to identify sequence-dissimilar but functionally converged antibodies can be overcome by using structure information to group antibodies. Recent advances have made structure-based methods feasible on a repertoire level. However, so far, their performance has only been evaluated on single-antigen sets of antibodies. A comprehensive comparison of the benefits and limitations of structure-based tools on realistic and diverse repertoire data is missing. Here, we aim to explore the promise of structure-based clustering algorithms to replace or augment the standard sequence-based approach, specifically by identifying low-sequence identity groups. Two methods, SAAB+ and SPACE2, are evaluated against clonotyping. We curated a dataset of well-annotated pairs of antibodies that show high overlap in epitope residues and thus bind the same region within their respective antigen. This set of antibodies was introduced into a simulated repertoire to compare the performance of clustering approaches on a diverse antibody set. Our analysis reveals that structure-based methods do group more antibodies together compared to clonotyping. However, it also highlights the limitations associated with the need for same-length CDR regions by SPACE2. This work thoroughly compares the utility of different clustering methods and provides insights into what further steps are required to effectively use antibody structural information to group immune repertoire data.</p>\",\"PeriodicalId\":20241,\"journal\":{\"name\":\"PLoS Computational Biology\",\"volume\":\"21 5\",\"pages\":\"e1013057\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pcbi.1013057\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1013057","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Comparison of sequence- and structure-based antibody clustering approaches on simulated repertoire sequencing data.
Repertoire sequencing allows us to investigate the antibody-mediated immune response. The clustering of sequences is a crucial step in the data analysis pipeline, aiding in the identification of functionally related antibodies. The conventional clustering approach of clonotyping relies on sequence information, particularly CDRH3 sequence identity and V/J gene usage, to group sequences into clonotypes. It has been suggested that the limitations of sequence-based approaches to identify sequence-dissimilar but functionally converged antibodies can be overcome by using structure information to group antibodies. Recent advances have made structure-based methods feasible on a repertoire level. However, so far, their performance has only been evaluated on single-antigen sets of antibodies. A comprehensive comparison of the benefits and limitations of structure-based tools on realistic and diverse repertoire data is missing. Here, we aim to explore the promise of structure-based clustering algorithms to replace or augment the standard sequence-based approach, specifically by identifying low-sequence identity groups. Two methods, SAAB+ and SPACE2, are evaluated against clonotyping. We curated a dataset of well-annotated pairs of antibodies that show high overlap in epitope residues and thus bind the same region within their respective antigen. This set of antibodies was introduced into a simulated repertoire to compare the performance of clustering approaches on a diverse antibody set. Our analysis reveals that structure-based methods do group more antibodies together compared to clonotyping. However, it also highlights the limitations associated with the need for same-length CDR regions by SPACE2. This work thoroughly compares the utility of different clustering methods and provides insights into what further steps are required to effectively use antibody structural information to group immune repertoire data.
期刊介绍:
PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery.
Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines.
Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights.
Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology.
Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.