通过深度学习优化的太赫兹成像对小麦早期发芽进行无损检测。

IF 4.4 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Guangming Li, Hongyi Ge, Yuying Jiang, Yuan Zhang, Xi Jin
{"title":"通过深度学习优化的太赫兹成像对小麦早期发芽进行无损检测。","authors":"Guangming Li, Hongyi Ge, Yuying Jiang, Yuan Zhang, Xi Jin","doi":"10.1186/s13007-025-01393-6","DOIUrl":null,"url":null,"abstract":"<p><p>Wheat, a major global cereal crop, is prone to quality degradation from early sprouting when stored improperly, resulting in substantial economic losses. Traditional methods for detecting early sprouting are labor-intensive and destructive, underscoring the need for rapid, non-destructive alternatives. Terahertz (THz) technology provides a promising solution due to its ability to perform non-invasive imaging of internal structures. However, current THz imaging techniques are limited by low image resolution, which restricts their practical application. We address these challenges by proposing an advanced deep learning framework for THz image classification of early sprouting wheat. We first develop an Enhanced Super-Resolution Generative Adversarial Network (AESRGAN) to improve the resolution of THz images, integrating an attention mechanism to focus on critical image regions. This model achieves a 0.76 dB improvement in Peak Signal-to-Noise Ratio (PSNR). Subsequently, we introduce the EfficientViT-based YOLO V8 classification model, incorporating a Depthwise Separable Attention (C2F-DSA) module, and further optimize the model using the Gazelle Optimization Algorithm (GOA). Experimental results demonstrate the GOA-EViTDSA-YOLO model achieves an accuracy of 97.5% and a mean Average Precision (mAP) of 0.962. The model is efficient and significantly enhances the classification of early sprouting wheat compared to other deep learning models.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"21 1","pages":"75"},"PeriodicalIF":4.4000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12125745/pdf/","citationCount":"0","resultStr":"{\"title\":\"Non-destructive detection of early wheat germination via deep learning-optimized terahertz imaging.\",\"authors\":\"Guangming Li, Hongyi Ge, Yuying Jiang, Yuan Zhang, Xi Jin\",\"doi\":\"10.1186/s13007-025-01393-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Wheat, a major global cereal crop, is prone to quality degradation from early sprouting when stored improperly, resulting in substantial economic losses. Traditional methods for detecting early sprouting are labor-intensive and destructive, underscoring the need for rapid, non-destructive alternatives. Terahertz (THz) technology provides a promising solution due to its ability to perform non-invasive imaging of internal structures. However, current THz imaging techniques are limited by low image resolution, which restricts their practical application. We address these challenges by proposing an advanced deep learning framework for THz image classification of early sprouting wheat. We first develop an Enhanced Super-Resolution Generative Adversarial Network (AESRGAN) to improve the resolution of THz images, integrating an attention mechanism to focus on critical image regions. This model achieves a 0.76 dB improvement in Peak Signal-to-Noise Ratio (PSNR). Subsequently, we introduce the EfficientViT-based YOLO V8 classification model, incorporating a Depthwise Separable Attention (C2F-DSA) module, and further optimize the model using the Gazelle Optimization Algorithm (GOA). Experimental results demonstrate the GOA-EViTDSA-YOLO model achieves an accuracy of 97.5% and a mean Average Precision (mAP) of 0.962. The model is efficient and significantly enhances the classification of early sprouting wheat compared to other deep learning models.</p>\",\"PeriodicalId\":20100,\"journal\":{\"name\":\"Plant Methods\",\"volume\":\"21 1\",\"pages\":\"75\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12125745/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13007-025-01393-6\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13007-025-01393-6","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

小麦是全球主要的谷类作物,贮存不当容易因发芽早而导致品质退化,造成重大经济损失。检测早期发芽的传统方法是劳动密集型和破坏性的,强调需要快速,非破坏性的替代方法。太赫兹(THz)技术提供了一个很有前途的解决方案,因为它能够对内部结构进行非侵入性成像。然而,目前的太赫兹成像技术受到图像分辨率低的限制,限制了其实际应用。我们通过提出一种用于早芽小麦太赫兹图像分类的高级深度学习框架来解决这些挑战。我们首先开发了一个增强型超分辨率生成对抗网络(AESRGAN)来提高太赫兹图像的分辨率,集成了一个关注机制来关注关键图像区域。该模型的峰值信噪比(PSNR)提高了0.76 dB。随后,我们引入了基于efficientviti的YOLO V8分类模型,并引入了深度可分离注意(deep - separthwise Attention, C2F-DSA)模块,并使用Gazelle Optimization Algorithm (GOA)对模型进行了进一步优化。实验结果表明,GOA-EViTDSA-YOLO模型的准确率为97.5%,平均平均精度(mAP)为0.962。与其他深度学习模型相比,该模型效率高,显著增强了对早芽小麦的分类能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-destructive detection of early wheat germination via deep learning-optimized terahertz imaging.

Wheat, a major global cereal crop, is prone to quality degradation from early sprouting when stored improperly, resulting in substantial economic losses. Traditional methods for detecting early sprouting are labor-intensive and destructive, underscoring the need for rapid, non-destructive alternatives. Terahertz (THz) technology provides a promising solution due to its ability to perform non-invasive imaging of internal structures. However, current THz imaging techniques are limited by low image resolution, which restricts their practical application. We address these challenges by proposing an advanced deep learning framework for THz image classification of early sprouting wheat. We first develop an Enhanced Super-Resolution Generative Adversarial Network (AESRGAN) to improve the resolution of THz images, integrating an attention mechanism to focus on critical image regions. This model achieves a 0.76 dB improvement in Peak Signal-to-Noise Ratio (PSNR). Subsequently, we introduce the EfficientViT-based YOLO V8 classification model, incorporating a Depthwise Separable Attention (C2F-DSA) module, and further optimize the model using the Gazelle Optimization Algorithm (GOA). Experimental results demonstrate the GOA-EViTDSA-YOLO model achieves an accuracy of 97.5% and a mean Average Precision (mAP) of 0.962. The model is efficient and significantly enhances the classification of early sprouting wheat compared to other deep learning models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Methods
Plant Methods 生物-植物科学
CiteScore
9.20
自引率
3.90%
发文量
121
审稿时长
2 months
期刊介绍: Plant Methods is an open access, peer-reviewed, online journal for the plant research community that encompasses all aspects of technological innovation in the plant sciences. There is no doubt that we have entered an exciting new era in plant biology. The completion of the Arabidopsis genome sequence, and the rapid progress being made in other plant genomics projects are providing unparalleled opportunities for progress in all areas of plant science. Nevertheless, enormous challenges lie ahead if we are to understand the function of every gene in the genome, and how the individual parts work together to make the whole organism. Achieving these goals will require an unprecedented collaborative effort, combining high-throughput, system-wide technologies with more focused approaches that integrate traditional disciplines such as cell biology, biochemistry and molecular genetics. Technological innovation is probably the most important catalyst for progress in any scientific discipline. Plant Methods’ goal is to stimulate the development and adoption of new and improved techniques and research tools and, where appropriate, to promote consistency of methodologies for better integration of data from different laboratories.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信