Guangming Li, Hongyi Ge, Yuying Jiang, Yuan Zhang, Xi Jin
{"title":"通过深度学习优化的太赫兹成像对小麦早期发芽进行无损检测。","authors":"Guangming Li, Hongyi Ge, Yuying Jiang, Yuan Zhang, Xi Jin","doi":"10.1186/s13007-025-01393-6","DOIUrl":null,"url":null,"abstract":"<p><p>Wheat, a major global cereal crop, is prone to quality degradation from early sprouting when stored improperly, resulting in substantial economic losses. Traditional methods for detecting early sprouting are labor-intensive and destructive, underscoring the need for rapid, non-destructive alternatives. Terahertz (THz) technology provides a promising solution due to its ability to perform non-invasive imaging of internal structures. However, current THz imaging techniques are limited by low image resolution, which restricts their practical application. We address these challenges by proposing an advanced deep learning framework for THz image classification of early sprouting wheat. We first develop an Enhanced Super-Resolution Generative Adversarial Network (AESRGAN) to improve the resolution of THz images, integrating an attention mechanism to focus on critical image regions. This model achieves a 0.76 dB improvement in Peak Signal-to-Noise Ratio (PSNR). Subsequently, we introduce the EfficientViT-based YOLO V8 classification model, incorporating a Depthwise Separable Attention (C2F-DSA) module, and further optimize the model using the Gazelle Optimization Algorithm (GOA). Experimental results demonstrate the GOA-EViTDSA-YOLO model achieves an accuracy of 97.5% and a mean Average Precision (mAP) of 0.962. The model is efficient and significantly enhances the classification of early sprouting wheat compared to other deep learning models.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"21 1","pages":"75"},"PeriodicalIF":4.4000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12125745/pdf/","citationCount":"0","resultStr":"{\"title\":\"Non-destructive detection of early wheat germination via deep learning-optimized terahertz imaging.\",\"authors\":\"Guangming Li, Hongyi Ge, Yuying Jiang, Yuan Zhang, Xi Jin\",\"doi\":\"10.1186/s13007-025-01393-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Wheat, a major global cereal crop, is prone to quality degradation from early sprouting when stored improperly, resulting in substantial economic losses. Traditional methods for detecting early sprouting are labor-intensive and destructive, underscoring the need for rapid, non-destructive alternatives. Terahertz (THz) technology provides a promising solution due to its ability to perform non-invasive imaging of internal structures. However, current THz imaging techniques are limited by low image resolution, which restricts their practical application. We address these challenges by proposing an advanced deep learning framework for THz image classification of early sprouting wheat. We first develop an Enhanced Super-Resolution Generative Adversarial Network (AESRGAN) to improve the resolution of THz images, integrating an attention mechanism to focus on critical image regions. This model achieves a 0.76 dB improvement in Peak Signal-to-Noise Ratio (PSNR). Subsequently, we introduce the EfficientViT-based YOLO V8 classification model, incorporating a Depthwise Separable Attention (C2F-DSA) module, and further optimize the model using the Gazelle Optimization Algorithm (GOA). Experimental results demonstrate the GOA-EViTDSA-YOLO model achieves an accuracy of 97.5% and a mean Average Precision (mAP) of 0.962. The model is efficient and significantly enhances the classification of early sprouting wheat compared to other deep learning models.</p>\",\"PeriodicalId\":20100,\"journal\":{\"name\":\"Plant Methods\",\"volume\":\"21 1\",\"pages\":\"75\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12125745/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13007-025-01393-6\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13007-025-01393-6","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Non-destructive detection of early wheat germination via deep learning-optimized terahertz imaging.
Wheat, a major global cereal crop, is prone to quality degradation from early sprouting when stored improperly, resulting in substantial economic losses. Traditional methods for detecting early sprouting are labor-intensive and destructive, underscoring the need for rapid, non-destructive alternatives. Terahertz (THz) technology provides a promising solution due to its ability to perform non-invasive imaging of internal structures. However, current THz imaging techniques are limited by low image resolution, which restricts their practical application. We address these challenges by proposing an advanced deep learning framework for THz image classification of early sprouting wheat. We first develop an Enhanced Super-Resolution Generative Adversarial Network (AESRGAN) to improve the resolution of THz images, integrating an attention mechanism to focus on critical image regions. This model achieves a 0.76 dB improvement in Peak Signal-to-Noise Ratio (PSNR). Subsequently, we introduce the EfficientViT-based YOLO V8 classification model, incorporating a Depthwise Separable Attention (C2F-DSA) module, and further optimize the model using the Gazelle Optimization Algorithm (GOA). Experimental results demonstrate the GOA-EViTDSA-YOLO model achieves an accuracy of 97.5% and a mean Average Precision (mAP) of 0.962. The model is efficient and significantly enhances the classification of early sprouting wheat compared to other deep learning models.
期刊介绍:
Plant Methods is an open access, peer-reviewed, online journal for the plant research community that encompasses all aspects of technological innovation in the plant sciences.
There is no doubt that we have entered an exciting new era in plant biology. The completion of the Arabidopsis genome sequence, and the rapid progress being made in other plant genomics projects are providing unparalleled opportunities for progress in all areas of plant science. Nevertheless, enormous challenges lie ahead if we are to understand the function of every gene in the genome, and how the individual parts work together to make the whole organism. Achieving these goals will require an unprecedented collaborative effort, combining high-throughput, system-wide technologies with more focused approaches that integrate traditional disciplines such as cell biology, biochemistry and molecular genetics.
Technological innovation is probably the most important catalyst for progress in any scientific discipline. Plant Methods’ goal is to stimulate the development and adoption of new and improved techniques and research tools and, where appropriate, to promote consistency of methodologies for better integration of data from different laboratories.