基于双色投影非相干光学系统的平移不变图像分类。

IF 3.3 2区 物理与天体物理 Q2 OPTICS
Optics letters Pub Date : 2025-06-01 DOI:10.1364/OL.560591
Jun-Ichiro Sugisaka
{"title":"基于双色投影非相干光学系统的平移不变图像分类。","authors":"Jun-Ichiro Sugisaka","doi":"10.1364/OL.560591","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, a shift-invariant optical pattern classification system is proposed. Optical machine learning systems have been widely studied as processors with massive parallel computing and low power consumption. Conventional optical systems used for pattern classification require diffractive optical elements with microscale surface structures or lens systems. The target images and optical elements require precise alignment. The proposed system comprises a liquid-crystal display, a target image, and an image sensor. Despite not requiring complex optical elements or alignment precision, distorted patterns are classified based on linear discriminant analysis (LDA), and high classification accuracy is maintained irrespective of the position of the target image. Classification accuracy and shift invariance were validated experimentally using a handwritten digit image dataset.</p>","PeriodicalId":19540,"journal":{"name":"Optics letters","volume":"50 11","pages":"3561-3564"},"PeriodicalIF":3.3000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shift-invariant image classification using a bicolor shadow-casting incoherent optical system.\",\"authors\":\"Jun-Ichiro Sugisaka\",\"doi\":\"10.1364/OL.560591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, a shift-invariant optical pattern classification system is proposed. Optical machine learning systems have been widely studied as processors with massive parallel computing and low power consumption. Conventional optical systems used for pattern classification require diffractive optical elements with microscale surface structures or lens systems. The target images and optical elements require precise alignment. The proposed system comprises a liquid-crystal display, a target image, and an image sensor. Despite not requiring complex optical elements or alignment precision, distorted patterns are classified based on linear discriminant analysis (LDA), and high classification accuracy is maintained irrespective of the position of the target image. Classification accuracy and shift invariance were validated experimentally using a handwritten digit image dataset.</p>\",\"PeriodicalId\":19540,\"journal\":{\"name\":\"Optics letters\",\"volume\":\"50 11\",\"pages\":\"3561-3564\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/OL.560591\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OL.560591","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种移位不变的光学模式分类系统。光学机器学习系统作为具有大量并行计算和低功耗的处理器已经得到了广泛的研究。用于图案分类的传统光学系统需要具有微尺度表面结构或透镜系统的衍射光学元件。目标图像和光学元件需要精确对准。所提出的系统包括液晶显示器、目标图像和图像传感器。尽管不需要复杂的光学元件或对准精度,但基于线性判别分析(LDA)对畸变模式进行分类,无论目标图像的位置如何,都能保持较高的分类精度。利用手写数字图像数据集对分类精度和移位不变性进行了实验验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shift-invariant image classification using a bicolor shadow-casting incoherent optical system.

In this study, a shift-invariant optical pattern classification system is proposed. Optical machine learning systems have been widely studied as processors with massive parallel computing and low power consumption. Conventional optical systems used for pattern classification require diffractive optical elements with microscale surface structures or lens systems. The target images and optical elements require precise alignment. The proposed system comprises a liquid-crystal display, a target image, and an image sensor. Despite not requiring complex optical elements or alignment precision, distorted patterns are classified based on linear discriminant analysis (LDA), and high classification accuracy is maintained irrespective of the position of the target image. Classification accuracy and shift invariance were validated experimentally using a handwritten digit image dataset.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optics letters
Optics letters 物理-光学
CiteScore
6.60
自引率
8.30%
发文量
2275
审稿时长
1.7 months
期刊介绍: The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community. Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the optics community and the effect of rapid publication on the research of others. This journal, published twice each month, is where readers look for the latest discoveries in optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信