用于20w级中红外激光传输的低损耗超大模区全固体硫系光子晶体光纤。

IF 3.1 2区 物理与天体物理 Q2 OPTICS
Optics letters Pub Date : 2025-06-01 DOI:10.1364/OL.557304
Chong Wang, Tiankai Hou, Yantao Xu, Yanjie Chang, Hao Zhang, Haitao Guo
{"title":"用于20w级中红外激光传输的低损耗超大模区全固体硫系光子晶体光纤。","authors":"Chong Wang, Tiankai Hou, Yantao Xu, Yanjie Chang, Hao Zhang, Haitao Guo","doi":"10.1364/OL.557304","DOIUrl":null,"url":null,"abstract":"<p><p>To achieve mid-infrared high-power laser delivery, a single-mode large mode area (∼9900 µm<sup>2</sup>) all-solid photonic crystal fiber (AS-PCF) based on As<sub>2</sub>Se<sub>3</sub> and As<sub>2</sub>S<sub>3</sub> chalcogenide glasses was designed. The finite element method was used to study the influence of structural parameters on the optical properties of the fiber. The AS-PCF was fabricated by the stacking-drawing method after material purification, and the optical loss, the near-field mode distributions, and the high-power laser transmission were measured. The fiber exhibits a minimum loss of 4.62 dB/m, which is the lowest loss among chalcogenide AS-PCF on record, and it can carry at least 20 W of high-power transmission, demonstrating strong potential for mid-infrared laser delivery applications.</p>","PeriodicalId":19540,"journal":{"name":"Optics letters","volume":"50 11","pages":"3696-3699"},"PeriodicalIF":3.1000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-loss ultra-large mode area all-solid chalcogenide photonic crystal fiber for 20 W level mid-infrared laser delivery.\",\"authors\":\"Chong Wang, Tiankai Hou, Yantao Xu, Yanjie Chang, Hao Zhang, Haitao Guo\",\"doi\":\"10.1364/OL.557304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To achieve mid-infrared high-power laser delivery, a single-mode large mode area (∼9900 µm<sup>2</sup>) all-solid photonic crystal fiber (AS-PCF) based on As<sub>2</sub>Se<sub>3</sub> and As<sub>2</sub>S<sub>3</sub> chalcogenide glasses was designed. The finite element method was used to study the influence of structural parameters on the optical properties of the fiber. The AS-PCF was fabricated by the stacking-drawing method after material purification, and the optical loss, the near-field mode distributions, and the high-power laser transmission were measured. The fiber exhibits a minimum loss of 4.62 dB/m, which is the lowest loss among chalcogenide AS-PCF on record, and it can carry at least 20 W of high-power transmission, demonstrating strong potential for mid-infrared laser delivery applications.</p>\",\"PeriodicalId\":19540,\"journal\":{\"name\":\"Optics letters\",\"volume\":\"50 11\",\"pages\":\"3696-3699\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/OL.557304\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OL.557304","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

为了实现中红外高功率激光传输,设计了一种基于As2Se3和As2S3硫系玻璃的单模大模面积(~ 9900µm2)全固体光子晶体光纤(AS-PCF)。采用有限元方法研究了结构参数对光纤光学性能的影响。采用材料纯化后的叠加拉伸法制备了AS-PCF,测量了其光损耗、近场模式分布和高功率激光透射率。该光纤的最小损耗为4.62 dB/m,是有记录以来硫系AS-PCF中损耗最低的,并且可以进行至少20 W的大功率传输,显示出中红外激光传输应用的强大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low-loss ultra-large mode area all-solid chalcogenide photonic crystal fiber for 20 W level mid-infrared laser delivery.

To achieve mid-infrared high-power laser delivery, a single-mode large mode area (∼9900 µm2) all-solid photonic crystal fiber (AS-PCF) based on As2Se3 and As2S3 chalcogenide glasses was designed. The finite element method was used to study the influence of structural parameters on the optical properties of the fiber. The AS-PCF was fabricated by the stacking-drawing method after material purification, and the optical loss, the near-field mode distributions, and the high-power laser transmission were measured. The fiber exhibits a minimum loss of 4.62 dB/m, which is the lowest loss among chalcogenide AS-PCF on record, and it can carry at least 20 W of high-power transmission, demonstrating strong potential for mid-infrared laser delivery applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optics letters
Optics letters 物理-光学
CiteScore
6.60
自引率
8.30%
发文量
2275
审稿时长
1.7 months
期刊介绍: The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community. Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the optics community and the effect of rapid publication on the research of others. This journal, published twice each month, is where readers look for the latest discoveries in optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信